期刊文献+

融合变精度粗糙熵和协同进化的概念格挖掘算法

Concept lattice mining algorithm using rough entropy with variable precision thresholding and co-evolution
下载PDF
导出
摘要 为解决概念格挖掘优化问题,借鉴变精度粗糙集模型和协同进化思想,提出了融合变精度粗糙熵和全局粒子群的概念格协同挖掘算法(REVPT)。该算法引入变精度粗糙熵对各概念格子群动态度量建立粗糙近似格,并通过种群之间协作共享寻优经验提高概念格的全局挖掘优化能力,有效缩减原格群规模并挖掘出一致粗糙分类规则。实验结果表明,当变精度粗糙熵阈值β处于某一合适范围,该算法在保证收敛速度同时具有较强的全局建格优化能力,在知识挖掘精度和效率方面具有较好的鲁棒性。 Based on some special advantages of variable precision rough sets model and co-evolutionary particle swarm algorithm,a novel concept lattice mining algorithm(REVPT)using rough entropy with variable precision thresholding and co-evolution was proposed to solve some optimization problems of the concept lattice mining.In this algorithm,variable precision rough entropy was used to scale the subpopulations of various concept lattices dynamically,and rough approximation lattices constructed.The global optimization efficiency of concept lattices was improved by sharing search experiences among different populations,which can reduce the scale of the former concept lattices,and deduce the consistent decision rule sets efficiently.The experimental results show that the proposed algorithm is better on the convergence and lattice optimization when the variable precision thresholding β is at a certain appropriate range.Therefore it is of robustness on the rules mining accuracy and efficiency.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2011年第1期25-30,共6页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家863计划资助项目(2006AA12A106) 江苏省高校自然科学研究项目(09KJD520008) 苏州大学江苏省计算机信息处理技术重点实验室开放课题(KJS1023)
关键词 概念格 变精度阈值 粗糙熵 粒子群 协同进化 concept lattice variable precision thresh olding rough entropy co-evolution
  • 相关文献

参考文献13

  • 1WILLE.R.Restructuring lattice theory:an approach based on hierarchies of concepts[M].Berlin:Dordrecht Reidwl,1982:445-470.
  • 2PAWLAK Z.Rough sets[J].International Journal of Information and Computer Sciences,1982,11 (5):341-356.
  • 3ZIARKO W.Variable precision rough set model[J].Journal of Computer and System Science,1993,46 (1):39-59.
  • 4POTTER M A,De JONG K A.A cooperative coevolutionary approach to function optimization[C] //DAVIDOR Y,SCHWEFEL H P,M(A)NNER R,et al.Proc of the parallel problem Solving from NaturePPSN Ⅲ,Int'l Conf on Evolutionary Computation LNCS 866,Berlin:Springer-Verlag,1994.
  • 5Frans van den Bergh,ANDRIES P E.A cooperative approach to particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):225-239.
  • 6LIANG J J,QIN A K,SUGANTHAN P N,et al.Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J].IEEE Transactions on Evolutionary Computation,2006,10(3):281-295.
  • 7SAQUER J,DEOGUN J S.Concept approximations based on rough sets and similarity measures[J].Int J Appl Math Comput Sci,2001,11(3):655-674.
  • 8SU Chao-ton,HSU Jyh-hwa.Precision parameter in the variable precision rough sets model:an application[J].The International Journal of Management Science,2006,34(2):149-157.
  • 9张贤勇,熊方,莫智文.精度与程度的逻辑或粗糙集模型[J].模式识别与人工智能,2009,22(5):697-703. 被引量:27
  • 10慕彩红,焦李成,刘逸.M-精英协同进化数值优化算法[J].软件学报,2009,20(11):2925-2938. 被引量:30

二级参考文献42

  • 1张贤勇,莫智文.变精度粗糙集[J].模式识别与人工智能,2004,17(2):151-155. 被引量:43
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3王俊年,申群太,沈洪远,年晓红.基于协同进化微粒群算法的神经网络自适应噪声消除系统[J].计算机工程与应用,2005,41(13):20-23. 被引量:4
  • 4王俊年,申群太,沈洪远,周鲜成.基于多种群协同进化微粒群算法的径向基神经网络设计[J].控制理论与应用,2006,23(2):251-255. 被引量:19
  • 5WAN D. Magic medicine cabinet: a situated portal for consumer healthcare [C]. Karlsruhe.. Proceeding of the International Symposium on Handheld and Ubiquitous Computing, 1999.
  • 6PARK D, CHOI Y B, NAM K C. RFID-Based RTLS for improvement of operation system in container terminals [C]. Busan: Proceeding of the Asia-Pacific Conference on Communications, 2006.
  • 7DECKER C, KUBACH U, BEIGL M. Revealing the retail black box by interaction sensing[C]. Rhode Island: Proceedings of the ICDCS 2003, Providence, 2003.
  • 8KROHN A, ZIMMER T, BEIGL M, et al. Collaborative sensing in a retail store using synchronous distributed iam signalling[C]. Munich: Proceedings of the 3rd International Conference on Pervasive Computing, 2002.
  • 9GUAN QIANG, LIU Yu, YANG Yi-ping, et al. Genetic Approach for Network Planning in the RFID Systems [C]. Jinan: Proc. of the six International Conference on Intelligent Systems Design and Applications, 2006.
  • 10AMALDI E, CAPONE A, MALUCELLI F, et al. UMTS radio planning: optimizing base station configuration [C]. Birmingham: Proc. of IEEE Vehicular Technology Conference, 2002.

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部