摘要
为解决概念格挖掘优化问题,借鉴变精度粗糙集模型和协同进化思想,提出了融合变精度粗糙熵和全局粒子群的概念格协同挖掘算法(REVPT)。该算法引入变精度粗糙熵对各概念格子群动态度量建立粗糙近似格,并通过种群之间协作共享寻优经验提高概念格的全局挖掘优化能力,有效缩减原格群规模并挖掘出一致粗糙分类规则。实验结果表明,当变精度粗糙熵阈值β处于某一合适范围,该算法在保证收敛速度同时具有较强的全局建格优化能力,在知识挖掘精度和效率方面具有较好的鲁棒性。
Based on some special advantages of variable precision rough sets model and co-evolutionary particle swarm algorithm,a novel concept lattice mining algorithm(REVPT)using rough entropy with variable precision thresholding and co-evolution was proposed to solve some optimization problems of the concept lattice mining.In this algorithm,variable precision rough entropy was used to scale the subpopulations of various concept lattices dynamically,and rough approximation lattices constructed.The global optimization efficiency of concept lattices was improved by sharing search experiences among different populations,which can reduce the scale of the former concept lattices,and deduce the consistent decision rule sets efficiently.The experimental results show that the proposed algorithm is better on the convergence and lattice optimization when the variable precision thresholding β is at a certain appropriate range.Therefore it is of robustness on the rules mining accuracy and efficiency.
出处
《解放军理工大学学报(自然科学版)》
EI
北大核心
2011年第1期25-30,共6页
Journal of PLA University of Science and Technology(Natural Science Edition)
基金
国家863计划资助项目(2006AA12A106)
江苏省高校自然科学研究项目(09KJD520008)
苏州大学江苏省计算机信息处理技术重点实验室开放课题(KJS1023)
关键词
概念格
变精度阈值
粗糙熵
粒子群
协同进化
concept lattice
variable precision thresh olding
rough entropy
co-evolution