摘要
本文从城市规模分布的Davis 二倍数规律(2n 规律:ai= ai+ n·2n,fi= fi+ n·2- n)中推导出具有一般意义的三参数Zipf模型:P(r)= C(r- α)- dz,揭示了2n 规律隐含的分形几何性质, 论证了2n 法则为Zipf维数dz= 1 时的特殊情形, 并将2n 规律推广到具有普遍意义的δn 规律, 给出了Zipf维数及分维与邻级倍数δ的数值关系:dz= 1/D= ln2/lnδ。最后从三个方面对文中的理论成果进行了实证分析。
The Zipf's model with three parameters, P(r)=C(r-α) - d z , is deduced from Davis' 2 n law: a i=a i+n ·2 n, f i=f i+n ·2 -n , by means of a series of mathematical transformation, where d z proves to have some nature of fractal dimension (D) because d z=1/D. The 2 n rule is generalized to δ n rule and δ represents an arbitrary number which is greater than one, namely δ >1. The relationships between δ and the fractal dimensions of city size distributions can be expressed as D=lnδ/ln2 : when δ =2, we have d z =1, so the 2 n rule is only a special case of the three parameter Zipf's model. The result of the demonstration of Davis' law as an equivalent of the generalized Zipf's law is illustrated and verified by some examples including the data in which 2 n rule of urban systems is discovered.
出处
《地理科学进展》
CSCD
1999年第3期255-262,共8页
Progress in Geography
基金
国家自然科学基金
河南省自然科学基础研究项目