摘要
研究一类具有常数避难所的两物种间的捕食-食饵模型。利用特征值理论得到正常数平衡解的稳定性结论;并且利用极值原理和Harnack不等式给出了系统正解的先验估计;最后,利用能量方法和拓扑度理论分别得出非常数正解的不存在性和非常数正解的存在性。
A kind of predator-prey model between two species incorporating a constant prey refuge is investigated. The stability of the positive constant solution of steady state system is discussed making use of eigenvalue theory. A prioriestimate of the positive solutions is given based on the maximum principle and Harnack inequality. Finally, by means of the energy method and topological degree theory, the non-existence of non-constant positive steady states is given and the existence of non-constant positive steady states is obtained, respectively.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2011年第2期15-21,共7页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(10571115)
陕西省自然科学基础研究资助项目(2007A11)
关键词
避难所
先验估计
非常数正解的存在性
prey refuge
priori estimate
non-constant positive solution existence