期刊文献+

一类具有常数避难所的捕食-食饵模型非常数正解的存在性

Existence of positive non-constant steady-states to a predator-prey system incorporating a constant prey refuge
原文传递
导出
摘要 研究一类具有常数避难所的两物种间的捕食-食饵模型。利用特征值理论得到正常数平衡解的稳定性结论;并且利用极值原理和Harnack不等式给出了系统正解的先验估计;最后,利用能量方法和拓扑度理论分别得出非常数正解的不存在性和非常数正解的存在性。 A kind of predator-prey model between two species incorporating a constant prey refuge is investigated. The stability of the positive constant solution of steady state system is discussed making use of eigenvalue theory. A prioriestimate of the positive solutions is given based on the maximum principle and Harnack inequality. Finally, by means of the energy method and topological degree theory, the non-existence of non-constant positive steady states is given and the existence of non-constant positive steady states is obtained, respectively.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第2期15-21,共7页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10571115) 陕西省自然科学基础研究资助项目(2007A11)
关键词 避难所 先验估计 非常数正解的存在性 prey refuge priori estimate non-constant positive solution existence
  • 相关文献

参考文献10

  • 1KAR T K. Stability analysis of a prey-predator model incorporating a prey refuge [J]. Communications in Nonlinear Science and Numerical Simulation, 2005,10:681-691.
  • 2HUANG Y J, CHEN F D, LI Z. Stability analysis of a prey-predator model with Holling type III response function incorpora- ting a prey refuge [ J ]. Applied Mathematics and Computation, 2006,182:672-683.
  • 3GONZALEZ-OLIVARESI E, RAMOS-JILIBERTO R. Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability I J ]. Ecological Modelling, 2003,166:135-146.
  • 4KO W, RYU K. Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refugee J]. Journal of Differential Equations, 2006, 231:534-550.
  • 5KAR T K. Modelling and analysis of a harvested prey-predator system incorporating a prey refuge[J].Journal of Computational and Applied Mathematics, 2006, 185 : 19-33.
  • 6COLLINGS J B. Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge[J]. Bulletin of Mathematical Biology, 1995, 57:63-76.
  • 7SIH A. Prey refuges and predator-prey stability[J]. Theoretical Population Biology, 1987, 31:1-12.
  • 8KRIVAN V. Effects of optimal antipredator behavior of prey on predator-prey dynamics: the role of refuges [J]. Theoretical Population Biology, 1998, 53 : 131-142.
  • 9PANG P Y H, WANG M X. Non-constant positive steady-states of a predator-prey system with non-monotonic functional response and diffusion[J]. Proc London Math Soc, 2004, 88 : 135-157.
  • 10WANG M X. Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion[J]. Phys D, 2004,196:172-192.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部