期刊文献+

一维黏性Camassa-Holm方程描述的液体-固体的相互作用

Large time behavior for a simplified 1d viscous Camassa-Holm equation model of fluid-solid interaction
原文传递
导出
摘要 讨论一维液体-固体相互作用的模型。利用Banach不动点原理和算子半群理论得到液体-固体相互作用的系统的解是整体存在惟一的。利用能量估计得到系统解的整体存在性,以及在质点固体两侧液体对它的压力渐近消失。 A simple model in one space dimension for the interaction between a fluid and a solid represented by a point mass is considered. By using the semi-group theorem and Banach fixed-point theorem, the existence and uniqueness of the solution to the system is proved. Furthermore, the asymptotic behavior of solutions for integrable data using energy estimates is described. That asymptotically the difference of pressure to both sides of the point mass vanishes is also proved.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第2期34-38,44,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61074021) 济南大学校博士基金资助项目(XBS0815)
关键词 一维黏性Camassa—Holm方程 液体-固体相互作用 Banach不动点原理 能量估计 one-dimension viscous Camassa-Holm equation fluid-Solid Interaction Banach fixed-point theorem energy estimate
  • 相关文献

参考文献11

  • 1CONCA C, San MARTIN J, TUCSNAK M. Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid[J]. Commun Partial Diff Eqns, 2000, 25 : 1019-1042.
  • 2ZUAZUA E. Exponential decay for the wave equation with locally distributed pamping[J]. Comm Part Diff Equ, 1990, 15(2) :205-235.
  • 3CONCA C, San MARTIN J, TUCSNAK M. Motion of a rigid body in a viscous fluid[J]. C R Acad Sci Paris, 1999, 328: 473-478.
  • 4DESJARDINS B, ESTEBAN M J. Existence of weak solutions for the motion of rigid bodies in a viscous fluid [J]. Archive , Rat Mech Anal, 1999, 146:59-71.
  • 5DESJARDINS B, ESTEBAN M J. On weak solutions for fluidrigid structure interaction: compressible and incompressible models[J]. Comm Partial Diff Eqns, 2000, 25:1399-1413.
  • 6GUNZBURGER M, LEE C-H, GREGORY A S. Global existenceof weak solutions for viscous incompresible ows around a moving rigid body in three dimensions[ J]. J Math Fluid Mech, 2000, 2(3) :219-266.
  • 7TIAN Lixin, SHEN Chunyu, DING Danping. Optimal control of the viscous Camassa-Holm equation[J]. Nonlinear Analysis: Real World Applications, 2009, 10 ( 1 ) :519-530. Doi: 10. 1016/j. nonrwa. 2007.10. 016.
  • 8WU Shuyin, YIN Zhaoyang. Blow-up, blow-up rate and decay of the solution of the weakly dissipative Camassa-Holm equation[J].Journal of Mathematical Physics, 2006, 47 : 1-12.
  • 9PAZY A. Semigroups of linear operators and application to partial differential eqations [ M]. New York: Springer-verlag, 1983.
  • 10LADYZHENSKAJA O A, SOLONNIKOV V A, URAL' CEVA N N. Linear and quasilinear equations of parabolic type [M]//Translations of Mathematical Monographs: 23. Providence RI, USA. American Mathematical Society, 1968.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部