摘要
设ΩRN(N≥5)是一个有界光滑区域,且0∈Ω,0≤s≤4,2*=(2N)/(N-4)是Sobolev临界指数,f(x),g(x)是已给函数.借助变分方法,本文在f(x),g(x),μ,λ的一定条件下,讨论了临界非齐问题Δ2u-μu/|x|s=|u|2*-2+λμf(x)+g(x)满足Dirichlet边界条件的解的存在性.
Let ΩRN(N≥5) be a smooth bound domain such that 0∈Ω,0≤s≤4.2*=(2N)/(N-4) is the critical Sobolev exponent,and f(x),g(x) are given functions.By using the variational methods,the paper proves the existence of solutions for the singular critical in the nonhomogeneous problem Δ2u-μu/|x|S=|u|2*-2u+λuf(x)+g(x) with Dirichlet boundary condition on Ω under some assumptions on f(x) g(x),μ and λ.
出处
《吉林师范大学学报(自然科学版)》
2011年第1期21-25,共5页
Journal of Jilin Normal University:Natural Science Edition
基金
喀什师范学院校内重点课题((09)2267)