期刊文献+

具有Sobolev临界指数的双调和方程解的存在性

Existence of Nontrivial Solution for Biharmonic Problems Involving Critical Sobolev Exponent
下载PDF
导出
摘要 设ΩRN(N≥5)是一个有界光滑区域,且0∈Ω,0≤s≤4,2*=(2N)/(N-4)是Sobolev临界指数,f(x),g(x)是已给函数.借助变分方法,本文在f(x),g(x),μ,λ的一定条件下,讨论了临界非齐问题Δ2u-μu/|x|s=|u|2*-2+λμf(x)+g(x)满足Dirichlet边界条件的解的存在性. Let ΩRN(N≥5) be a smooth bound domain such that 0∈Ω,0≤s≤4.2*=(2N)/(N-4) is the critical Sobolev exponent,and f(x),g(x) are given functions.By using the variational methods,the paper proves the existence of solutions for the singular critical in the nonhomogeneous problem Δ2u-μu/|x|S=|u|2*-2u+λuf(x)+g(x) with Dirichlet boundary condition on Ω under some assumptions on f(x) g(x),μ and λ.
作者 胡爱莲
出处 《吉林师范大学学报(自然科学版)》 2011年第1期21-25,共5页 Journal of Jilin Normal University:Natural Science Edition
基金 喀什师范学院校内重点课题((09)2267)
关键词 双调和方程 临界Sobolev临界指数 非平凡解 变分方法 biharmonic problems critical Sobolev exponent nontrivial solution variational methods
  • 相关文献

参考文献2

二级参考文献12

  • 1Shen, Y.T. On the Dirichlet problem for quasilinear elliptic equation with strongly singular coefficients.Proc. of the 1980 Beijing symp. on Diff. Geom. and Diff. Equation, Science Press, Gordon and Breach Science Publishers, 3:1407-1417 (1982).
  • 2Shen, Y.T. Weak'solutions of ell'iptic "equations of second order with singular coefficients. Advances in Mathematics, 7:321-327 (1964) (in Chinese).
  • 3Talenti, G. Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa. CI. Sci., Ser. IV, 3:697-718 (1976).
  • 4Adimurthi, Chaudhuri N., Ramaswamy, M. An improved Hardy-Sobolev inequality and its application.Proc. Amer, Math. Soc,, 130:489-505 (2002).
  • 5Almgren, F,, Lieb, E. Symmetric decreasing rearrangement is sometimes continuous. J. Amer, Math.Soc,, 2:683-773 (1989).
  • 6Brezis, H,, Lieb, E. A relation between point convergence of functions and convergence of functionals.Proc, Amer, Math, Soc,, 88:486-490 (1983).
  • 7Brezis, H,, Vazquez J,L. Blow-up solution of some nonlinear elliptic equation. Rev, Mat. Complut., 10(2):443-469 (1997).
  • 8Chaudhuri, N," Existence of positive solutions of some semilinear elliptic equations with singular coefficients,Proc, Roy. Soc. Edinburgh Sec, A, 131:1275-1295 (2001).
  • 9Dold, J.W., Galaktionov,VV,A., Lacey, A.A,, Vazquez, J.L. Rate of approach to a singular steady state in quasilinear reaction-diffusion equations. Ann, Scuola Noem, Sup. CI, Sci,. 26(4): 663-687 (1998).
  • 10Ekeland I. On the variational priciple. J. Math, Anal, Appl.. 47:324- 353 (1974).

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部