期刊文献+

小净距隧道开挖围岩压力的混沌神经网络模型预测 被引量:2

Pressure Prediction of Surrounding Rock in Tunnel Based on Chaotic Neural Network
下载PDF
导出
摘要 隧道围岩压力是分析围岩稳定性的关键因素。由于围岩变形受众多因素影响,且各因素之间存在强烈的非线形关系,因此,难以进行有效的预测。提出基于混沌神经网络模型的方法,分析混沌与神经网络相结合预测手段的可行性,对围岩随时间变化的压力进行仿真计算。对该理论的建立及预测方法进行系统分析,为该领域的研究提供有效的技术方法。结果表明,此方法预测精度高,能够满足工程及控制要求。 The surrounding rock pressure is key to analyze the stability.However,the displacement of surrounding rock influenced by so many factors,and there is nonlinear function between those factors,so it is difficult to estimate.This article present a method of chaotic neural networks for simulation of surrounding rock pressure by time series and analyses feasibility of forecasting by using chaos neural network,The establishment of the prediction model and the process of application are discussed in detail.The result indicated that this method is efficient and feasible,on the certain degree;this method is fit to engineering control.
作者 龚雄文
出处 《交通科技与经济》 2011年第2期67-70,共4页 Technology & Economy in Areas of Communications
基金 交通部 重庆市重点实验室开放基金资助项目(CQSLBF-Y07-3)
关键词 隧道 混沌优化 BP神经模型 围岩 tunnel chaos optimization back propagation neural network surrounding rock
  • 相关文献

参考文献4

二级参考文献45

共引文献86

同被引文献23

引证文献2

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部