期刊文献+

利用空间微分块与动态球策略的k近邻搜索算法研究 被引量:8

Algorithm for Finding k-Nearest Neighbors Based on Spatial Sub-cubes and Dynamic Sphere
原文传递
导出
摘要 提出了一种基于空间微分块与动态球判定策略的k近邻快速搜索算法。该算法以空间包围盒为基础,首先对空间进行微分块,将离散点分配到子空间;然后,以计算点为球心建立动态球,确定k近邻候选点。球半径可根据空间包围盒的大小、离散点数量和k近邻点数进行估算和优化。实验结果表明,该算法可快速完成k近邻搜索,运行稳定可靠。 A new algorithm for finding k-nearest neighbors based on spatial sub-cubes and dynamic sphere is presented.At first,the min-max box of the dataset is divided into a set of uniform sub-cubes,every point is distributed in a sub-cube.Then the dynamic sphere is builded using the test point as the center of sphere in order to reduce the searching scope.The radius of sphere can be estimated and adjusted according to the volume of min-max box,the numbers of spatial points and the numbers of k-nearest neighbors.The experimental results show that the algorithm can find k-nearest neighbors fastly.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2011年第3期358-362,共5页 Geomatics and Information Science of Wuhan University
基金 云南省应用基础研究面上资助项目(2009CD102)
关键词 离散数据 K近邻 空间微分块 动态球 scattered points k-nearest neighbors spatial sub-cubes dynamic sphere
  • 相关文献

参考文献6

二级参考文献40

  • 1熊邦书,何明一,俞华璟.三维散乱数据的k个最近邻域快速搜索算法[J].计算机辅助设计与图形学学报,2004,16(7):909-912. 被引量:65
  • 2史力平.三维数据场可视化技术在逆向工程中的应用研究(硕士学位论文)[M].南京:南京航空航天大学,1999..
  • 3Shekhar S, Huang Y. Co-location Rules Mining.. A Summary of Results [C]. The 7th International Symposium on Spatio and Temporal Database (SSTD), New York, 2001
  • 4Morimoto Y. Mining Frequent Neighboring Class Sets in Spatial Databases[C]. The 7th ACM SIGKDD International Conf on Knowledge Discovery and Data Mining, San Franciscc, California, 2001
  • 5Huang Yan, Shashi S, Xiong Hui. Discovering Colocation Patterns from Spatial Datasets: A General Approach[J]. Transactions on Knowledge and Data Engineening, 2004,16 (6) :
  • 6Yoo J, Shekhar S. A Partial Join Approach for Mining Co-location Patterns[C]. The 12nd Annual ACM International Workshop on Geographic Information Systems ( ACM-GIS), Washington D C, USA, 2004
  • 7Yoo J, Shekhar S, Celik M. A Join-less Approach for Co-location Pattern Mining: A Summary of Results[C]. The 5th IEEE International Conference on Data Mining(ICDM'05), Houston, USA, 2005
  • 8Huang Yan, Pei Jian, Xiong Hui. Mining Co-Location Patterns with Rare Events from Spatial Data Sets[J]. GeoInformatica, 2006(10):239-260
  • 9Cover T M, Hart P E. Nearest Neighbor Pattern Classification [ J ]. Knowledge Based Systems, 1995, 8(6): 373-389
  • 10Zhou Shuigeng, Zhao Yue, Guan Jihong, et al. A Neighborhood-based Clustering Algorithm [M]. Berlin/Heidelberg : Springer, 2005

共引文献239

同被引文献43

  • 1熊邦书,何明一,俞华璟.三维散乱数据的k个最近邻域快速搜索算法[J].计算机辅助设计与图形学学报,2004,16(7):909-912. 被引量:65
  • 2伍爱华.三维散乱数据点集k近邻的快速搜索算法[J].湖南工业大学学报,2007,21(2):84-87. 被引量:3
  • 3马骊溟,徐毅,李泽湘.基于动态网格划分的散乱点近邻近快速搜索算法[J].计算机工程,2008,34(8):10-12.
  • 4Sarkar M,Leong T Y.Application of k-nearest Neighbors Algorithm on Breast Cancer Diagnosis Problem[C] //Proc.of American Medical Informatics Association Annual Symposium.Los Angeles,USA:IEEE Computer Society Press,2000:759-763.
  • 5Procopiuc O,Agarwal P K,Arge L,et al.Bkd-tree:A Dynamic Scalable kd-tree[C] //Proc.of International Symposium on Spatial and Temporal Databases.Berlin,Germany:Springer,2003:46-65.
  • 6Sankaranarayanan J,Samet H,Varshney A.A Fast All Nearest Neighbor Algorithm for Applications Involving Large Point-clouds[J].Computers&Graph,2007,31(2):157-174.
  • 7Connor M,Kumar P.Fast Construction of k-nearest Neighbor Graphs for Point Clouds[J].IEEE Transactions on Visualization&Computer Graphics,2010,16(4):599-608.
  • 8Dickerson M T,Drysdale R L S,Sack J R.Simple Algorithms for Enumerating Interpoint Distance and Finding k Nearest Neighbors[J].International Journal of Computational Geometry and Applications,1992,2(3):221-239.
  • 9Goodsell G.On Finding p-th Nearest Neighbors of Scattered Points in Two Dimensions for Small p[J].Computer Aided Geometric Design,2000,17(4):387-392.
  • 10Piegl L A,Tiller W.Algorithm for Finding All k Nearest Neighbors[J].Computer-aided Design,2002,34(2):167-172.

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部