期刊文献+

一类双调和映照的单叶半径估计 被引量:5

On the Estimates of Univalent Radius for Certain Biharmonic Mappings
下载PDF
导出
摘要 若F为单位圆D={z||z|<1}上的双调和映照,L=zz--zz-,即L是一个线性复算子.利用单位圆上有界调和函数的系数估计不等式,对双调和映照L(F)的单叶半径进行估计,所得到的结果优于Chen和Ponnusamy等的结果. Let F be a biharmonic mapping on the unit disk D,L=zz-,it is a linear complex operator,using the coefficient inequalities for bounded harmonic mappings,we obtain a better univalent radius for biharmonic mappings L(F).Our results improve the one made by Chen and Ponnusamy.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2011年第2期218-221,共4页 Journal of Huaqiao University(Natural Science)
基金 福建省自然科学基金项目(2008J0195)
关键词 Landau定理 双调和映照 线性复算子 单叶半径 landau theorem biharmonic mapping linear complex operator univalent radius
  • 相关文献

参考文献10

  • 1ABDULHADI Z,MUHANNA Y A,KHURI S.On some properties of solutions of the biharmonic equation[J].Appied Mathematics and Computation,2006,177(1):346-351.
  • 2DUREB P.Harmonic mappings in the plane[M].Cabridge:Cabridge Univ Press,2004.
  • 3ABDULHADI Z,MUHANNA Y A.Landau's theorem for biharmonic mappings[J].J Math Anal Appl,2008,338(1):705-709.
  • 4CHEN S.PONNUSAMY S,WANG X.Landau's theorem for certain biharmonic mappings[J].Applied Mathematics and Computation,2009,208 (2):427-433.
  • 5LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Bull Amer Math Soc,1936,42(10):689-692.
  • 6CHEN H H,GAUTHIER P M,HENGARTNER W.Bloch constants for planar harmonic mappings[J].Proc Amer Math Soc,2000,128 (11):3231-3240.
  • 7HUANG Xin-zhong.Estimates on Bloch constants for planar harmonic mappings[J].J Math Anal Appl,2007,337(2):880-887.
  • 8LIU Ming-sheng.Landau's theorem for planar harmonic mappings[J].Computers and Mathematics with Appications,2009,57(7):1142-1146.
  • 9LIU MingSheng School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China.Estimates on Bloch constants for planar harmonic mappings[J].Science China Mathematics,2009,52(1):87-93. 被引量:16
  • 10LIU Ming-sheng.Landau's theorems for biharmonic mappings[J].Comlex Variables and Elliptic Equations,2008,53(9):843-855.

二级参考文献10

  • 1Huaihui Chen,Chengji Xiong.Julia’s lemma and bloch constants[J]. Science in China Series A: Mathematics . 2003 (3)
  • 2DorM,Nowak M.Landau’s theorem for planar harmonic mappings. Comput Methods Funct Theory . 2000
  • 3Grigoryan A.Landau and Bloch theorems for harmonic mappings. Complex Variables Theory and Application . 2006
  • 4Huang X Z.Estimates on Bloch constants for planar harmonic mappings. Journal of Mathematical Analysis and Applications . 2007
  • 5Chen H H,Xiong C J.Julia’s lemma and Bloch constants. Sci China Ser A-Math . 2003
  • 6Chen H H.On the Bloch constant. Approximation, Complex Analysis, and Potential Theory . 2001
  • 7Lewy,H.On the non-vanishing of the Jacobian in certain one-to-one mappings. Bulletin of the American Mathematical Society . 1936
  • 8CHEN H,,GAUTHIER P M,HENGARTNER W.Bloch constants for planar harmonic mappings. Poc AmerMath Soc . 2000
  • 9Graham,I.,Kohr,G. Geometric Function Theory in One and Higher Dimensions . 2003
  • 10Kuang Jichang.Applied Inequalities. . 2004

共引文献15

同被引文献48

  • 1Lewy H. On the non-vanishing of the Jacobian in certain one-to-one mappings [J]. Uspekhi Mat Nauk, 1948, 3(2): 216-219.
  • 2Abdulhadi Z, Muhanna V A. Landau's theorem for biharmonic mappings[J]. J Math Anal Appl, 2008, 338(1): 705-709.
  • 3Abdulhadi Z, Muhanna Y A, Khuri S. On some properties of solutions of the biharmonic equation[J]. Appied Mathematics andComputation, 2006, 177(1): 346-351.
  • 4Abdulhadi Z,Muhanna Y A, Khuri S. On univalent solutions of the biharmonic equation[J]. Journal of Inequalities andApplications, 2005, 5: 469-478.
  • 5Lhi M S, Liu Z W. On Bloch con.stiiius for certain harmonic mappings(J]. Southeast Asian Bulletin of Mathematics, 2011, 35:1-10.
  • 6Liu M S. Landau's theorems for biharmonic mappings[J]. Complex Variables and Elliptic Equations, 2008,53(9): 843-855.
  • 7Chen S, Ponnusamy S,Wang X. Landau's theorem for certain biharmonic mappings[J]. Applied Mathematics and Computation,2009,208(2): 427-433.
  • 8Clunie J, Sheil-SmallLT. Harmonic univalent functions[J]. Ann. Acad. Sci. Fenn. Ser. A. I. Math., 1984,9: 3-25.
  • 9Chen S. Ponnusamy S.Wang X. Coefficient estimates and Landou-Bloch's constant for planar harmonic Mappings[J]. BullMalaysian Math Science Soc, 2011, 34(2): 255-265.
  • 10Bshouty D,Lyzzaik A. Problems and conjectures in planar harmonic mappings[J]. J Analysis, 2010, 18: 69-81.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部