期刊文献+

列联表分析中的Simpson悖论问题 被引量:7

The Problem of Simpson Paradox in Contingency Table
下载PDF
导出
摘要 对于分类数据,列联表无疑是最好的统计工具之一,但列联表分析也会带来Simpson悖论问题。从理论上来说,可以通过改变试验结构来消解Simpson悖论,但社会研究数据大多是观测数据,是无法通过试验来控制的,因此Simpson悖论与其说是"悖论",不如说是反映了分类数据的非线性特征,是"不可压缩"而压缩的结果,反映了列联表从高维压缩至低维时的统计信息差异,实质上是欧氏空间的降维问题。 Contingency table is a good statistical tool to categorical data.It is an important applicative problem in social statistic analysis that how to explain Simpson Paradox in contingency table.Theoretically,we can change experiment structure to eliminate the paradox,but most of the data in social research is observational data.It can't be controlled by experiment.So Simpson Paradox is not a paradox but unique nonlinearity character reflection of categorical data.It is a compressible result under incompressible condition.It is different reflection of statistic information from the upper dimensions to low dimension.It is essentially a problem of reducing dimensions in Euclidean space.
作者 程中兴
出处 《统计与信息论坛》 CSSCI 2011年第2期9-12,共4页 Journal of Statistics and Information
基金 教育部人文社会科学研究青年基金项目<群体性事件中的谣言 流言研究>(10YJC840014) 中国博士后科学基金项目<疾病与单位社会的变迁:一项医学社会学的研究>(20100470620)
关键词 Simpson悖论 分类数据 非线性特征 Simpson Paradox categorical data nonlinearity character
  • 相关文献

参考文献8

二级参考文献27

  • 1邱晓岩.如何解读设计素描中的“造型”[J].西南民族大学学报(人文社会科学版),2005,26(3):294-296. 被引量:7
  • 2叶航.利他行为的经济学解释[J].经济学家,2005(3):22-29. 被引量:109
  • 3Bickel,P, J. , Hammel, E. A. and O'Connell, J, W. (1975)Sex bias in graduate admissionsa data from Berkeley[J]. Science 187, 398- 404.
  • 4Freedman, D. (1999). From association to causation : sortie remarks on the kistory of atatistics[J]. Statist. Sci. 14, 243- 258.
  • 5Freedman, D. et al. (1991). Statistics[M].魏宗舒等译.统计学.1997
  • 6Geng ,Z. (1992). Collapsibility of relative risks in contingency tables with a response tariable[J]. J. Roy. Statist, Soc. B 54, 585-93.
  • 7Geng ,Z. , Guo, J , Lau, T. and Fang, W. (2000). Confounding, homogeneity and collapsibitity for causal effects in epidemiologic studies[M]. Submitted to Statistica Sinica.
  • 8Greenland, S. and Robins, J, M. (1986), Identifiability, exchangeability, and epidemiologic confounding [J]. Int. J. of Epid. 15, 413-419.
  • 9Greenland, S. , Robins, J. and Pearl, J. (1999). Confounding and collapsibility in causal inference[J]. Statist.Sci 14, 29-45.
  • 10Holland, P. W. (1986). Statistics and causal inference[J]. J. Am. Statist. Asso.81, 945-70.

共引文献26

同被引文献43

  • 1曹桃云,陈敏琼.基于距离协方差的二维列联表的独立性检验[J].系统科学与数学,2020(9):1687-1700. 被引量:5
  • 2王顺芳,王学仁.不完全2×2列联表中基于置信区间的样本量研究[J].云南大学学报(自然科学版),2007,29(2):109-113. 被引量:4
  • 3张宏培.关于单向有序R×C表的统计分析[J].统计与信息论坛,1999,14(4):43-46. 被引量:3
  • 4孙凤.列联表的对数线性模型[J].统计与决策,2006,22(23):22-23. 被引量:6
  • 5BISHOP Y M, FIENBERG S E, HOLLAND P W. Discrete multivariate analysis theory and practice[ M ]. The MIT Press, 1975: 25 - 124.
  • 6SHI L, SUN H Y, BAI P. Bayesian confidence interval for difference of the proportions in a 2×2 table with structural zero [ J ]. Journal of Applied Statistics,2009,36 ( 5 ) :483 - 494.
  • 7SHI L, BAI P. Bayesian confidence interval for the difference of two proportions in the matched-paired design [ J ]. Communications in Statistics-Theory and Methods,2008,37 : 2034 - 2051.
  • 8SHI L, BAI P. Bayesian confidence interval for the ratio of marginal propabilities in the matched-paired design [ J ]. Communications in StatisticsTheory and Methods,2009,38:1300- 1316.
  • 9PHAM G T, TURKKAN N. Distribution of the linear combination of two general beta variables and applications [ J ]. Commun Statist-Theory Meth, 1998, 27 (7) : 1851 - 1869.
  • 10BISHOP Y M, FIENBERG S E, HOLLAND P W. Discrete multivariate analysis theory and practice[ M ]. The MIT Press, 1975: 25 - 124.

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部