摘要
手术场空间与图像空间之间的配准是影响颅脑手术可视化系统精度的一个主要因素, 给定两个三维空间之间的对应两组点 {pi} 和 {p′i}; i= 1, 2, …, N。两个空间中点之间的关系可由p′i= Rpi+ T表示, 其中R是旋转矩阵,T是平移矢量。本文提供一种基于矩阵单值分解(SVD) 求解R和T的最小二乘解的四点算法, 并对算法进行了推导, 该算法与迭代法相比, 具有速度快、用点少的优点, 尤其适用于实际应用的颅脑手术可视化系统。
Registration between Surgery\|Space and Image\|Space is one of the key factors that affect the accuracy of the brain surgery visualization system.Given two sets of 3\|D corresponding points{ p i } and {p′ i},i=1,2,…,N .Relationship between 3\|D point sets of two spaces fits p′ i=Rp\-i+T, where R is a rotation matrix, T is a translation vector.A four\|point algorithm is presented in this paper for finding the least\|squares solution of R and T ,which is based on the singular value decomposition (SVD) of matrix,and the derivation of the algorithm is provided too.The algorithm has advantages of less computing time,and requires the least number of registration points,compared with conventional iterative algorithm.Especially,it is applicable in practical brain surgery visualization system.\;
出处
《北京生物医学工程》
1999年第4期221-224,共4页
Beijing Biomedical Engineering
关键词
颅脑手术可视化
点配准
最小二乘法
单值分解
Brain surgery visulization
Point\|based registration
Least\|squares
Singular value decompostion(SVD)