期刊文献+

一类具两条不连续相交线的平面系统的闭轨

Closed trajectory of a class of planar systems with two intersecting lines of discontinuity
下载PDF
导出
摘要 研究了一类具两条不连续相交线的平面系统的闭轨.利用微分包含理论和点变换的方法,获得了一些有趣的结果,包括滑模解,同宿解和闭轨的存在性.同时给出了闭轨存在的必要条件. Closed trajectory of a class of planar systems with two intersecting lines of discontinuity are investigated. Using the theory of differential inclusions and the method of point transformation, some interesting results are provided including existence of sliding motion solutions, homoclinic solution and closed trajectories. Synchronously we give necessary conditions for the existence of closed trajectories.
出处 《纯粹数学与应用数学》 CSCD 2011年第1期13-18,共6页 Pure and Applied Mathematics
基金 国家自然科学基金(10771055 60835004) 湖南省应用基础研究计划重点项目(2008FJ2008) 湖南省教育厅项目(09B019)
关键词 平面系统 闭轨 同宿解 微分包含 planar system closed trajectory homoclinic solution differential inclusion
  • 相关文献

参考文献8

  • 1Bacciotti A,Ceragioli F.Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions[J].Esaim-Cocv,1999,4(2):361-376.
  • 2Forti M,Nistri P.Global convergence of neural networks with discontinuous neuron activations[J].IEEETrans.Circuits Syst.I,2003,50(11):1421-1435.
  • 3Andronov A A,Vitt A A,Khaikin S E.Theory of Oscillators[M].Oxford:Pergamon,1966.
  • 4Filippov A F.Differential equations with discontinuous righthand sides[C]//Mathematics and its Applicatious(Soviet Series).Boston,MA:Kluwer Acadmic,1988.
  • 5Gaivanetto U,Bishop S R,Briseghella L.Mechanical stick-slip vibratious[J].Int.Bifurc.J.Chaos.,1995,5(3):637-651.
  • 6Popp K,Hinrichs N,Oestreich M.Dynamical behavior of a friction oscillator with simultaneous self and external excitation[J].Sadhana,1995,20(2-4):627-654.
  • 7Giannakopoulos F,Pliete K.Planar systems of piecewise linear differential equations with a line of discontinulty[J].Nonlinearity,2001,14(6):1611-1632.
  • 8Kuznetsov Y A.Elements of Applied Bifurcation Theory[M].New York:Springer,1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部