期刊文献+

KdV方程的延拓结构 被引量:2

Prolongation structure of KdV equation
下载PDF
导出
摘要 利用外微分形式系统和Lie代数表示理论提出了求解非线性波方程Lax对的延拓结构理论,该方法是构造非线性波方程Lax对的系统最有效的方法.其关键在于如何给出延拓代数的具体表示,如微分算子表示或矩阵表示.如果一个非线性波方程具有非平凡的延拓代数,则称其延拓代数可积,本篇论文主要利用延拓结构理论,讨论KdV方程的解,同时给出了带一个参数的特殊KdV方程的线性谱问题. This paper the differential system and Lie algebra expression theory to point out the continuation structure theory for solving the nonlinear wave equation. This method is a systematic and effective way tostructure the nonlinear wave equation Lax pair. The key is on how to point out the detailed expressions of continuation algebra, such as differential operator and matrix expression. If a nonlinear wave equation has an uncommon continuation algebra, it can be said that its continuation structure is integrable. This is the key research method of this paper. The theory of prolongation structure is used to discuss the special KdV Equation.We also present the linear spectral problem of the special KdV equation with a parameter.
出处 《纯粹数学与应用数学》 CSCD 2011年第1期27-31,共5页 Pure and Applied Mathematics
基金 国家教育部高等学校特色专业建设点-数学与应用数学(藏汉双语)项目(TS2413)
关键词 李代数 延拓结构 LAX对 线性谱问题 Lie algebra prolongation structure Lax pair linear spectral problem
  • 相关文献

参考文献10

  • 1Kalkanh A.Prolongation structure and Painleve property of the Gǖrses-Nutku equations[J].Inter.Theor.Phys.,1987,26:1085-1090.
  • 2Chowdhury A,Paul S.Electron affinities of di-and tetracyanoethylene and cyanobenzenes based on measurements of gas-phase electron-transfer equilibria[J].Inter.Theor.Phys.,1985,24:633-639.
  • 3Dodd R K,Fordy A P.The prolongation structures of quasi-polynomial flows[J].R.Proc.Soc.Lond.A,1983,12:385-389.
  • 4Chowdhury A,T Roy.Prolongation structure and inverse scattering formalism for super symmetric sinegordon equation in ordinary space time variable[J].Math.Phys.,1979,20:45-59.
  • 5Morris H C.Time-dependent propagation of high energy laser beams through the atmosphere[J].Math.Phys.,1978,4:76-85.
  • 6Das C,Chowdhury A.Chaos,on the prolongation structure and integrability of HNLS equation[J].Solitons and Fractals,2001,12:2081-2090.
  • 7Zhao W Z,Bai Y Q,Wu K.Generalized inhomogeneous Heisenberg ferromagnet model and generalized nonlinear Schrodinger equation[J].Phys.Lett.,A,2006,3:52-64.
  • 8Finley J D.The Robinson-Trautman type Ⅲ prolongation structure contains K[J].Math Phys.,1996,21:365-375.
  • 9Alfinito E,V Grassi,Leo R A.Equations of the reaction-ditfusion type with a loop algebra structure[J].Inverse Problems,1998,14:1387-1393.
  • 10Yohta O R,Hirota R.Qunsideterminant solutions of a non-Abelian Hirota-Miwa equation[J].Phys.Soc.Jpn.,2007,76:24-35.

同被引文献18

  • 1曾昕,张鸿庆.(2+1)维色散长波方程的新的类孤子解[J].物理学报,2005,54(2):504-510. 被引量:27
  • 2吕大昭.非线性发展方程的丰富的Jacobi椭圆函数解[J].物理学报,2005,54(10):4501-4505. 被引量:22
  • 3谷超豪 郭柏灵 李翊神 等.孤立子理论及其应用[M].杭州:浙江科学技术出版社,1990..
  • 4Ahlfors L V. Complex analysis ( Third Edition) [ M ]. Beijang: China Machine press,2004.
  • 5华东师范大学数学系.数学分析[M].北京:高等教育出版社,2001..
  • 6陈维桓.流形上的微积分[M].北京:高等教育出版社,2003.
  • 7Wang M L. Solitary wave solution for Boussinesq equations [J]. Phys. Lett. A., 1995,199(2):169-172.
  • 8Fan E G, Zhang H Q. A note on the homogeneous balance method [J]. Phys. Lett. A' 1998,246(9):403-406.
  • 9Kudryashow N A. Exact solutions of the generalized Kuramoto-Sivashinsky equations [J]. Phys. Lett. A, 1990,147(5\6):287-291.
  • 10Liu Q, Zhu J M. Exact Jacobian elliptic function solutions and hyperbolic function solutions for Sawada-Kotere equation with variable coefficient [J]. Phys. Lett. A, 2006,352:233-238.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部