摘要
设CNcn是具有常全纯截面曲率c(≤0)的复n维的复空间形式,Mn是CNcn中常数量曲率的完备全实伪脐子流形,R,‖h‖2分别表示Mn的标准数量曲率和第二基本形式模长的平方.假设R≥ c/4.利用丘成桐的广义极大值原理和自伴随算子研究了关于‖h‖2的pinching问题,得到了两个Mn成为全测地或全脐的刚性定理.
Let CNcn be a complex space form,of complex dimension n,with constant holomorphic sectional curvature c(≤ 0).Mn is a complete totally real pseudo-umbilical submanifold with constant scalar curvaturein CNcn.Denoted by R and h 2,the normalized scalar curvature and the square of the length of the second fundamental form of Mn,respectively.Suppose R ≥ c/4.We studied the pinching problem on h 2 by making use of the generalized maximal principle and self-adjoint differential operator of Yau,and obtained two rigidity theorems for Mn to be a totally geodesic or totally umblilic submanifold.
出处
《纯粹数学与应用数学》
CSCD
2011年第1期116-122,共7页
Pure and Applied Mathematics
基金
安徽省教育厅自然科学基金(KJ2008A05zC)
关键词
复空间形式
常数量曲率
伪脐
第二基本形式
全测地
全脐
complex space form
constant scalar curvature
pseudo-umbilical
the second fundamental form
totally geodesic
totally umblilic