摘要
为了深入研究N(2,2,0)代数的代数结构,首先利用代数的推理方法进一步研究了N(2,2,0)代数的稳定化子,改进了以前学者的部分结果,然后利用稳定化子建立了一种同余关系,给出了N(2,2,0)代数的同余分解,证明了其商代数仍是N(2,2,0)代数,并获得了自然同态下一类逆像的代数结构和性质.
In order to study the algebraic structure of N(2,2,0) algebras in a deep-going way,the stabilizer of N(2,2,0) algebras is studied in further by using the algebraic deductive method and parts of the results by before scholars are improved firstly.Then the stabilizer is applied to establish a kind of congruence relationsand a congruence decomposition on N(2,2,0) algebras is given,It is proved that the quotient algebra is also N(2,2,0) algebra.Finally,The algebraic structure and some properties of a class of converse images under the natural homomorphism are obtained.
出处
《纯粹数学与应用数学》
CSCD
2011年第1期123-128,共6页
Pure and Applied Mathematics
关键词
N(2
2
0)代数
稳定化子
同余分解
自然同态
逆像
N(2
2
0) algebra
stabilizer
congruence decomposition
natural homomorphism
converse image