期刊文献+

(2+1)维广义Burgers方程的Lie点对称,相似约化和精确解 被引量:4

Lie point symmetry,similarity reduction and exact solutions of (2+1)-dimensional generalized Burgers equation
下载PDF
导出
摘要 讨论了(2+1)维广义Burgers方程.通过Lie群方法求出了该方程的李点对称,并利用李点对称将方程进行相似约化,求出了(2+1)维广义Burgers方程的几种精确解.该方法可以用于研究更高阶的偏微分方程. A systematic investigation to derive the Lie point symmetries of (2+1)-dimensional generalized Burgers equation is presented.Using the obtained point symmetries,similarity reductions are derived,andsome exact solutions are obtained.The method can be used to study the higher-order partial differentiale quations.
出处 《纯粹数学与应用数学》 CSCD 2011年第1期138-142,共5页 Pure and Applied Mathematics
基金 国家自然科学基金(10501040) 浙江省自然科学基金(Y6100611)
关键词 (2+1)维广义Burgers方程 Lie点对称 相似约化 精确解 (2+1)-dimensional generalized Burgers equation Lie point symmetry similarity reduction exact solution
  • 相关文献

参考文献3

二级参考文献37

  • 1Kivshar Y S and Melomend B A 1989 Rev. Mod. Phys. 61 765
  • 2Stegemaat G I and Segev M 1999 Science 286 1518
  • 3Gollub J P and Cross M C 2000 Nature 404 710
  • 4Chen H S, Wang J and Gu Y 2000 Chin. Phys. Lett. 17 85
  • 5Jalabert R A and Pastawski H M 2001 Phys. Rev. Lett. 86 2490
  • 6Loutsenko I and Roubtsov D 1997 Phys. Rev. Lett. 78 3011
  • 7Tajiri M and Maesono H 1997 Phys. Rev. E 55 3351
  • 8Gedalin M, Scott T C and Band Y B 1997 Phys. Rev. Lett. 78 448
  • 9Lou S Y and Chen LL 1999 J. Math. Phys. 40 6491
  • 10Lou S Y and Lu J Z 1996 J. Phys. A: Math. Gen. 29 4209

共引文献5

同被引文献25

  • 1Konopelchenko B, Dubrovsky V. Some new integrable nonlinear evolution equations in (2+1) dimension[J]. Phys. Lett. A., 1984,102:15-17.
  • 2Maccari A. A new integrable Davey-Stewartson-type equation[J]. Math. Phys., 1999,40:3971-3977.
  • 3Zhi H Y. Lie point symmetry and some new soliton-like solutions of the Konopelchenko-Dubrovsky equa- tions[J]. Appl. Math. Comput., 2008,203:931-936.
  • 4Lin J, Lou S Y, Wang K L. Multi-soliton solutions of the Konopelehenko-Dubrovsky equation[J]. Chin. Phys. Lett., 2001,18:1173-1175.
  • 5Zhang S. The periodic wave solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equations[J]. Chaos. Solitons. Fractals., 2006,30:1213-1220.
  • 6Zhang S, Xia T. A generalized F-expansion method and new exact solutions of Konopelchenko- Dubrovsky equations[J]. Appl. Math. Comput., 2006,183:1190-1200.
  • 7Song L, Zhang H. New exact solutions for the Konopelchenko-Dubrovsky equation using an extended Riccati equation rational expansion method and symbolic computation[J]. Appl. Math. Comput., 2007,187:1373- 1388.
  • 8Abdou M A. Generalized solitonary and periodic solutions for nonlinear partial differential equations by the Exp-function method[J]. Nonlinear. Dyn., 2008,52:1-9.
  • 9Wazwaz A. New kinks and solitons solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equa-tion[J]. Math. Comput. Model., 2007,45:473-479.
  • 10Ahmet B. Applications of the extended tanh method for couplednonlinear evolution equations[J]. Commu- nications in Nonlinear Science and Numerical Simulation., 2008,13:1748-1757.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部