期刊文献+

具有K阶代数免疫的布尔函数

Boolean Functions with K Algebraic Immune Degree
下载PDF
导出
摘要 代数免疫度是衡量布尔函数抵抗代数攻击的重要性能指标,具有低代数免疫度的布尔函数是不能抵抗代数攻击的。根据1型线性结构布尔函数的代数免疫阶完全取决于其零化子代数次数的结论,文中从线性结构的角度构造了具有K代数免疫阶的布尔函数,并且给出了此类函数循环谱特征、自相关特征及非线性度值。一系列的结论揭示了布尔函数的线性结构对其代数免疫阶的制约作用。并且通过特殊"分配"A和S\A中点的取值可重新调整循环谱值及自相关值。 Algebraic immunity is an important index to measure the ability to resist algebraic attack. If a Boolean function has a low algebraic immunity, it cannot resist the algebraic attack. According to the algebraic immune degree of a Boolean function with 1 -form linear structure is completely determined by the lowest degree of the annihilator forf. From the perspective of linear structure, this paper is giv- en Boolean functions with K algebraic immunity and the characters of walsh transform and the nonlinearity of the functions. A series of conclusions reveals a linear structure of Boolean function restricts algebraic immunity. Meanwhile, special allocation of points of Sand S/Awhich can be re-adjusted value of cyclic spectrum and autocorrelation values.
机构地区 郑州大学数学系
出处 《计算机技术与发展》 2011年第3期158-160,共3页 Computer Technology and Development
关键词 代数免疫度 循环谱 非线性度 algebraic immunity walsh transform nonlinearity
  • 相关文献

参考文献12

  • 1Carlet C.A method of construction of balanced functions with optimum algebraic immunity[EB/OL].2006.http://eprint.iacr.org/.2006/149.
  • 2Dalai D K,Maitra S,S&rkar S.Basic theory in construction of Boolean functions with maximum possible annihilator immunity[C]//In:Des Codes Crypt(2006).[s.l.]:[s.n.],2006:41-58.
  • 3Mac Williams F J,SloaneN J A.The Theory of Error-Correc-ring Codes[M].North-Holland:Elsevier,1977.
  • 4徐春霞,陈卫红.求布尔函数零化子的一种算法以及一类代数攻击不变量[J].电子与信息学报,2007,29(4):888-891. 被引量:3
  • 5杨洋.广义布尔函数的代数免疫与零化子[J].湖北大学学报(自然科学版),2008,30(4):329-332. 被引量:1
  • 6Meier W,Pasalic E,Cadet C.Algebraic Attacks and Decomposition of Boolean Functions[C]//Proc.of EUROCRYPT'04.Interlaken,Switzerland:Springer,2004:474-491.
  • 7王永娟,范淑琴,冀会芳,韩文报.正规性和代数免疫[J].解放军理工大学学报(自然科学版),2009,10(4):329-333. 被引量:1
  • 8冯登国.密码学分析[M].北京:清华大学出版社,2000.
  • 9温巧燕 钮心忻 杨义先.密码学中的布尔函数[M].北京:科学出版社,2000..
  • 10Dalai D K,Cupta K C,Maitra S.Results on Algebraic Immunity for Cryptographically Significant Boolean Functions[C]//Proc.of INDOCRYPT'04.Chennai,India:Springer,2004:92-106.

二级参考文献15

  • 1谢敏,裴定一.5元饱和最优布尔函数的计数问题[J].软件学报,2005,16(4):595-600. 被引量:1
  • 2Courtois N, Meier W. Algebraic attacks on stream ciphers with linear feedback[M]//. Advances in cryptology- CRYPTO 2003. Berlin Heidelberg: Springer-Verlag, 2003, LNCS 2 656:345-359.
  • 3Meier W, Pasalic E, Carlet C. Algebraic attacks and decomposition of boolean functions [M]//. Advances in crytology-EUROCRYPT 2004. Berlin Heidelberg : Springer-Verlag, 2004, LNCS 3 027 : 474-491.
  • 4Batten L M. Algebraic attacks over GF(q)[M]//. Proceedings of indocrypt 2004. Berlin Heidelberg: Springer- Verlag, 2004,LNCS 3 348:84-91.
  • 5Dalai D K, Gupta K C, Maitra S. Results on algebraic immunity for cryptographically significant boolean functions [M]//. Proceedings of indocrypt 2004. Berlin Heidelberg: Springer-Verlag, 2004, LNCS 3 348:92-106.
  • 6COURTOIS N, MEIER W. Algebraic attacks on stream ciphers with linear feedback[C]. Advances inCryptology-EUROCRYPT 2003, Berlin: Springer- Verlag, 2003.
  • 7MIHALJEVIE M, INAI H. Cryptanalysis of Toyocrypt-HSIstream cipher [JB/OL]. IEICE Transactions on Fundamentals, 2006, F-B5-A: 66-73. http ://www. csl. esat. sony CO jp/atl/papers/IEICE-jan02, pdf. 2006-12-11.
  • 8BABBAGE S. Cryptanalysis of LILI-128. Nessie project internal repor[R/OL], http ://www. Cosic. esat. kuleuven, ac. be/nessie/reports/. 2001-01-22.
  • 9MEIER W, PASALIC E, CARLET C. Algebraic attacks and decomposition of boolean functions [C]. Berlin Springer-Verlag: Advances in Cryptology-EUROCRYPT 2004, 2004.
  • 10CARLET C, DALAI D K, GUPTA K C, et al. Algebraic immunity for crypotographically significant Boolean functions: analysis and construction [J]. IEEE Trans Inf Theory, 2006 (52) : 3105-3121.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部