期刊文献+

土著微生物对尾矿中重金属的淋滤研究 被引量:8

Bioleaching of Heavy Metals from Mine Tailings by Indigenous Microorganisms
下载PDF
导出
摘要 生物淋滤对尾矿的重金属污染处理的效果已经得到了广泛的认可.在对酸性尾矿中的土著氧化硫硫杆菌以及氧化亚铁硫杆菌进行分离以及加富培养的基础上,分别运用单一菌种以及混合菌种对尾矿样本进行淋滤处理.通过12 d的淋滤实验,实验室结果表明,分离出的氧化亚铁硫杆菌以及氧化硫硫杆菌等土著微生物具有较高的利用价值.同时实验表明,在采用适当菌种的前提下,尾矿中重金属的溶解率都得到了不同程度的提高:土著氧化亚铁硫杆菌对Zn的淋滤效果最好,达到了98.12%;对于Cu的淋滤,土著氧化亚铁硫杆菌与土著氧化硫硫杆菌的混合菌种的效果最好,达到88.75%. Bioleaching heavy metal from mine tailings has been widely accepted.In this study,the bacteria indigenous Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans isolated from an acidic mine tailings dam were grown and acclimated in presence of mine tailings and then used as bioleaching bacteria to solubilize the mine tailings.After 12 days of bioleaching,the laboratory results of the experiment demonstrated that the indigenous bacteria had high value of bioleaching.And the percentages of copper and zinc solubilized into the leaching solution from tailings basically increased with the optimal bacteria.The percentage of Zn solubilized is 98.12% when indigenous Acidithiobacillus ferrooxidans are used as bioleaching bacteria.The percentage of Cu solubilized is 88.75% when the mixture of indigenous Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans are used as bioleaching bacteria.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第2期70-74,共5页 Journal of Hunan University:Natural Sciences
基金 国家'十一五'重大科技支撑项目(2006BAD03A1704 2006BAD03A1706) 国家高技术研究发展计划(863计划)资助项目(2004AA649370) 国家重点基础研究发展计划(973计划)资助项目(2005CB724203) 国家杰出青年科学基金资助项目(5042596 50225926) 长江学者和大学创新研究团队计划资助项目(IRT0719) 湖南大学'中央高校基本科研业务费'能力培养类项目(ZYgx200903)
关键词 生物淋滤 尾矿 重金属 土著细菌 联合作用 bioleaching mine tailings heavy metals indigenous bacteria synthesized effect
  • 相关文献

参考文献22

  • 1WONG J W,XIANG L,GU X Y,et al.Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source[J].Chemosphere,2004,55(1):101-107.
  • 2YANG J,WANG Q H,WANG Q,et al.Heavy metals extraction from municipal solid waste incineration fly ash using adapted metal tolerant Aspergillus niger[J].Bioresource Technology,2009,100(1):254-260.
  • 3WANG Y S,PAN Z Y,LANG J M,et al.Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans[J].Journal of Hazardous Materials,2007,147:319-324.
  • 4UMRANIA V V.Bioremediation of toxic heavy metals using acidothermophilic autotrophes[J].Bioresource Technology,2006,97:1237-1242.
  • 5C.L.BRIERLEY.How will biomining be applied in future?[J].中国有色金属学会会刊:英文版,2008,18(6):1302-1310. 被引量:14
  • 6POULIN R,LAWRENCE R W.Economic and environmental niches of biohydrometallurgy[J].Minerals Engineering,1996,9(8):799-810.
  • 7BABEL S,DACERA D M.Heavy metal removal from contaminated sludge for land application:a review[J].Waste Management,2006,26:988-1004.
  • 8BALLESTER A,GONZ(A)LEZ F,BL(A)ZQUEZ M L,et al.The use of catalytic in bioleaching[J].Hydrometallurgy,1992,29:145-160.
  • 9DISPIRITO A A,SILVER M,VOSS L,et al.Flagella and Pili of iron-oxidizing Thiobacilli isolated from a uranium mine in northern Ontario Canada[J].Applied and Environmental Microbiology,1982,43:1196-1200.
  • 10SOLISIO C,LODI A,VEGLIO F.Bioleaching of zinc and aluminum from industrial waste sludges by means of Thiobacillus ferrooxidans[J].Waste Management,2002,22:667-675.

二级参考文献17

  • 1RAWLINGS D E, JOHNSON D B. Preface [M]//RAWLINGS D E, JOHNSON D B, eds. Biomining. Berlin Heidelberg: Springer-Verlag, 2007:Ⅴ-Ⅵ.
  • 2ZIMMERLEY S R, WILSON D G, PRATER J D. Cyclic leaching process employing iron oxidizing bacteria. US2829964 [P]. 1958.
  • 3BRIERLEY C L, BRIERLEY J A. Bioheap processes-operational requirements and techniques [M]//JERGENSEN G W, ed. Copper Leaching, Solvent Extraction and Electrowinning Technologies. Littleton, Colorado: Society of Mining Engineers, 1999:17-27.
  • 4WATLING H R. The bioleaching of sulphide minerals with emphasis on copper sulphides--A review [J]. Hydrometallurgy, 2006, 84: 81-108
  • 5LOGAN T C, SEAL T, BRIERLEY J A. Whole-ore heap biooxidation of sulfidic gold-bearing ores [M]/. RAWLINGS D E, JOHNSON B D, eds. Biomining. Berlin Heidelberg: Springer-Verlag, 2007: 113-138.
  • 6BRIERLEY C L, BRIGGS A P. Selection and sizing of biooxidation equipment and circuit [M]. MULAR A L, HALBE D N, BARRET D J, eds. Mineral Processing, Plant Design, Practice and Control. Littlefon, Colorado: Society of Mining Engineers, 2002:1540-1568.
  • 7MOORE E Scaling fresh heights in heap-leach technology [J]. Mining Magazine, 2008, 198 (4): 54-66.
  • 8ROBERTSON S, VAN STADEN P, VERCUIL A, GLOVER G, SHAIDAEE, B. Heap bioleaching of low-grade ~halcopyrite ore from the Darehzare deposit [C]. ALTA 2007 Copper. Perth, 2007.
  • 9WATLING H R. The bioleaching of nickel-copper sulphides [J]. Hydrometallurgy, 2008, 91 : 70-88.
  • 10HARVEY T J, BATH M. The GeoBiotics GEOCOAT^(R) technology [M]. RAWLINGS D E, JOHNSON B D, eds. Biomining. Berlin Heidelberg: Springer-Verlag, 2007:97-112.

共引文献13

同被引文献98

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部