期刊文献+

基于直方图互确认的图像阈值化分割 被引量:10

Image thresholding based on mutual recognition of histogram
下载PDF
导出
摘要 目前图像阈值化中存在的主要问题是分割结果的有效性以及分割数目的确定,本文提出一种新颖并且原理简单的图像阈值化算法.根据图像在直方图上的直观分布,提出一种新的阈值判断机制,该机制基于峰谷对阈值的影响,累积所有直方图对阈值的认可程度,并结合一些加速策略,使得算法具有很强的实用性和适用性.算法结合最终的认可程度的百分比确定取值数目,进而确定分割数目.在实验中,引入两种较新的阈值化方法,本文算法的分割效果在实验比较中表现良好,也很稳定.该方法在红外图像处理中也得到较为显著的分割效果. For more effective image thresholding,a novel and simple method was proposed which based directly on the histogram of the image.According to the intuitive appearance of the histogram and the influence of peaks and valleys to final threshold,a new thresholding measurement is defined creatively.Accumulating mutual recognitions of all other histogram bins and combining some speeding-up strategies,the proposed measurement makes image thresholding more practicable and applicable.The number of segmentation is determined by the percentage of the final recognition value.As can be seen from the comparison with other methods in experiments,results of the proposed method looks better than other ones.Moreover,the objects are highlighted well in infrared image.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2011年第1期80-84,共5页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金(60675015)资助项目
关键词 图像处理 阈值化 直方图 互确认 image processing thresholding histogram mutual recognition
  • 相关文献

参考文献12

  • 1Sezgin M,Sankur B.Survey over image thresholding techniques and quantitative performance evaluation[J].J.Electron.Imaging,2004,13(1):146-165.
  • 2Sezan M I.A peak detection algorithm and its application to histogram-based image data reduction[J].Computer Vision,Graphics and Image Processing,1990,49(1):36-51.
  • 3Arora S,Acharya J,Verma A,et al.Multilevel thresholding for image segmentation through a fast statistical recursire algorithm[J].Pattern Recognition Letters,2008,29(2):119-125.
  • 4Tsai D,Cheng Y.A fast histogram-clustering.approach for multi-level thresholding[J].Pattern Recognition Letters,1992,13(4):245-252.
  • 5田小林,焦李成,缑水平.加权空间函数优化FCM的SAR图像分割[J].西安电子科技大学学报,2008,35(5):846-852. 被引量:14
  • 6刘宏建,刘允才.一种基于粗集理论的图像分割方法[J].红外与毫米波学报,2004,23(6):459-464. 被引量:4
  • 7Kittler J,lllingworth J.Minimum error thresholding[J].Pattern Recognition,1986,19(1):41-47.
  • 8Lee J S,Yang M C K.Thresholding selection using estimates from truncated normal distribution[J].IEEE Trans.On System,Man and Cybernetics,1989,19(2):422-429.
  • 9Otsu N.A threshold selection method from gray-level histogram[J].IEEE Trans.On System,Man and Cybernetics,1979,9(1):62-66.
  • 10Cho S,Haralick R,Yi S.Improvement of Kittler and Ill-ingworth' s Minimum Error Thresholding[J].Pattern Recognition,1989,22(5):609-617.

二级参考文献17

  • 1PAWLAK Z. Vagueness and uncertainty: A Rough Set Prospective[J]. Inter. J. of Computer Interlligence, 1995, 11(2):227-232.
  • 2David Eppstein. Fast hierarchical clustering and other applications of dynamic closest pairs[C]. Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 619-628, California:San Francisco, 1998, 25-27.
  • 3Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means model[J]. IEEE Transactions on Fuzzy Systems 3, 1995, 3:370-379.
  • 4Choubey S K, Deogun J S, Raghavan V V, et al. A comparison of feature selection algorithms in the context of rough classifiers[C]. Proceedings of the Fifth IEEE International Conference on, 1996, 2: 1122-1128.
  • 5Fu shixing, Lu Zengxiang, Lu Haiming, et al. Rough set theory and its practice in knowledge discovery[C]. Proceedings of the 3rd World Congress on Intelligent Control and Automation. 2000, 2535-2539.
  • 6Gonzalez R C, Woods R E. Digital Image Processing[M]. 3 edition, Addison Wesley Publishing Company, 1992.
  • 7Das S, Abraham A, Konar A. Spatial Information Based Image Segmentation Using a Modified Particle Swarm Optimization Algorithm.. Vol 2 [C]//Proceedings of ISDA'06. Jinan: IEEE, 2006: 438-444.
  • 8Pham D L. Spatial Models for Fuzzy Clustering [J]. Computer Vision and Image Understanding, 2001, 84 (2): 285-297.
  • 9Shen S, Sandham W, Granat M, et al. MRI Fuzzy Segmentation of Brain Tissue Using Neighborhood Attraction with Neural-network Optimization [J]. IEEE Trans on Information Technology in Biomedicine, 2005, 9(3): 459-467.
  • 10Li Jie, Gao Xinbo, Jiao Licheng. A GA-based Clustering Algorithm for Large Data Sets with Mixed Numeric and Categorical Values [C]//Proceedings of ICCIMA'03. Xi'an: IEEE, 2003: 102-107.

共引文献16

同被引文献116

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部