期刊文献+

基于多尺度几何分析的目标描述和识别 被引量:5

Object description and recognition using multiscale geometric analysis
下载PDF
导出
摘要 结合多尺度几何分析和局部二值模式算子,构造了一种新的多尺度、多方向局部特征描述子——局部Contourlet二值模式(LCBP).通过对尺度内、尺度间及同一尺度不同方向子带内LCBP直方图统计分析,同时考虑到LCBP的四叉树结构特点和模型的简单性,用两状态HMT描述LCBP系数,得到LCBP-HMT模型.在此基础上,提出了基于LCBP-HMT模型的目标识别算法,该算法提取LCBP-HMT模型参数作为特征,通过比较输入目标特征和各类标准目标特征的Kullback-Leibler距离进行分类.实验结果表明,LCBP特征比传统小波域特征和Contourlet域高斯分布模型特征更具鉴别能力. A novel local feature descriptor,called Local Contourlet Binary Pattern(LCBP),was developed in this paper.LCBP provides a multiscale and multidirectional representation for images since it integrates multiscale geometric analysis and local binary pattern operators.With the quadtree structure of LCBP and simplicity of the model itself,the LCBP coefficients were modeled by a two-state HMT that is in accordance with the intra-band,inter-band and inter-directional distributions of LCBP coefficients.Based on the LCBP-HMT model,an object classification method was further proposed to extract parameters of the LCBP-HMT model as features and classify the query samples by comparing the Kullback-Liebler distance between features of the query samples and that of the prototype objects.Experimental results illustrate the superiority of the LCBP over traditional wavelet features and Gaussian density function model features of contourlet coefficients in terms of the discrimination performance.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2011年第1期85-90,共6页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金(90820009 60805002) 航空科学基金(20080169003) 东南大学优秀青年教师教学科研资助计划(4008001015) 国家留学基金委资助计划
关键词 多尺度几何分析 轮廓波变换 局部二值模式 目标识别 multiscale geometric analysis contourlet transform local binary pattern object classification
  • 相关文献

参考文献10

  • 1Arivazhagan S,Ganesan L,Kumar S.Texture classification using curvelet statistical and co-occurrence features[C].ICPR,Atlanta,2006,2:938-941.
  • 2Boukabou R,Bouridane A.Contourlet-based feature extraction with PCA for face recognition[C].NASA/ESA Conferenec on Adaptive Hardware and Systems,Noordwijk,2008,1:482-486.
  • 3Vo N,Oraintara S,Nguyen T.Statistical image modeling using yon Mises distribution in the complex directional wavelet domain[C].ISCAS,Seattle,2008,1:2885-2888.
  • 4Do M N,Vetterli M.The contourlet transform:an efficient directional multiresolution image representation[J].IEEE Trans.Image Processing,2005,14(12):2091-2106.
  • 5Po D,Do M N.Directional multiscale modeling of image using the contourlet transform[J].IEEE Trans.Image Processing,2006,15(6):1610-1620.
  • 6Ojala T,Pietikainen M,MatenpaaT.Multiresolution grayscale and rotation invariant texture classification with local binary patterns[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2002,24(7):971-987.
  • 7Ahonen,Hadid,Pietikainen.Face description with local binary patterns:application to face recognition[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2006,28(12):2037-2041.
  • 8Do M N.Fast approximation of Kullback-leibler distance for dependence trees and hidden Markov models[J].IEEE,Signal Processing Letters,2003,10(4):115-118.
  • 9Rubc E,Kamel M,Ahmed M.Wavelet approximationbased affine invariant 2-D shape matching and classification[C].ICIP,Singapore,2004,4:2139-2142.
  • 10Mosleh A,Zargari F,Azizi R.Text image retrieval using contourlet transform[C].International Symposium on Signal,Circuit and Systems,Lasi,2009,1:1-4.

同被引文献39

  • 1王巍,安友伟,黄展,丁锋,杨铿,白晨旭.基于CNN的红外图像边缘检测算法的FPGA实现[J].光子学报,2012,41(11):1354-1358. 被引量:7
  • 2焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 3朱兵,李金宗,陈爱军.大尺度遥感图像中港口目标快速识别[J].模式识别与人工智能,2006,19(4):552-556. 被引量:6
  • 4徐学强,汪渤,于家城,王闻博.一种新型不变矩在图像识别中的应用[J].光学技术,2007,33(4):580-583. 被引量:11
  • 5Li Y B, Li J J. Harris Comer Detection Algorithm Based on Improved Contourlet Transform ~J ].Proeedia Engineering, 2011,15:2239-2243.
  • 6Dong Y S,Ma J W. Feature. Extraction Through Contourlet Subband Clustering for Texture Classification[J]. Neurocom- puting,2013,116 : 157-164.
  • 7Mosleh A,Z~ F,Azizi R. Texture Image Retrieval Using Contourlet Transform[ C]//Intenmfional Symposium on Sig- nal, Circuit and Systems, l.aso, 2009,1 : 1-4.
  • 8Kuong H P, Kin M L. Multi-resolution Fature Fusion for Face Recognition[ J ]. Pattern Recognition, 2013,47(2) :556-567.
  • 9Liu Z M, Liu C J. Fusion of Cokor, I.~eal Spatial and Global Frequency Information for Face Recognition [J]. Pattern Recognition, 2010,43 : 2882-2890.
  • 10Minh N D, Vetterli M. The Contourlet Transform: An Ei~cient Directional Multire~lution Image Representation [J]. IEEE Transactions on Image Processing, 2005,14(12): 2091-2106.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部