期刊文献+

Research of variable speed directly driven SRG wind power system position sensorless based on DFNN by FEA 被引量:1

Research of variable speed directly driven SRG wind power system position sensorless based on DFNN by FEA
下载PDF
导出
摘要 A new method of switched reluctance wind power generation position sensorless based on DFNN by FEA was proposed, Through current and magnetic linkage to get the angle of SRG rotor position, the nonlinear mapping of cur- rent-magnetic linkage-angle was built, By training these sample data from FEA, the angle of SRG rotor position was replaced by the output of DFNN to achieve SRG position sensorless. Simulation results show that the error between actual rotor position and estimate rotor position is small; SRG can commutate with great accuracy; and the output voltage of SRG wind power system under variable wind speed is essentially constant.
出处 《Journal of Coal Science & Engineering(China)》 2011年第1期107-112,共6页 煤炭学报(英文版)
基金 Supported by the National Natural Science Foundation of China (50977080) the Science & Technology Department Project of Hunan Province (2010F J3116) the Education Department Project of Hunan Province ( 10A 114)
关键词 variable speed directly driven switched reluctance generation(SRG) dynamical Fuzzy neuro-network(DFNN) finite element analysis(FEA) 开关磁阻发电机 无位置传感器 风力发电系统 有限元分析 基础 发电机转子 变速 输出电压
  • 相关文献

参考文献1

二级参考文献7

  • 1张承慧,石庆升,程金.一种多电机同步传动模糊神经网络控制器的设计[J].控制与决策,2007,22(1):30-34. 被引量:38
  • 2C. C. Chuang, S. F. Su, S. S. Chen, Robus TSK Fuzzy Modeling for Function Approximation with Outliers [ J ]. IEEE Trans. Fuzzy Syst. , 2001, 9(6) : 810-821.
  • 3M. Mahfouf, M. F. Abbod, D. A. Linkens, Online elicitation of Mamdani-type Fuzzy Rules vai TSK-based Generalized Predictive Control [ J ]. IEEE Trans. Syst. , Man, Cybern. , 2003, 33(3) : 465-475.
  • 4C. J. Lin, C. C. Chin. Prediction and Identification Using Wavelet-based Recurrent Fuzzy Neural Networks [ J ]. IEEE Trans. Syst. , Man, Cybern. , 2004, 34(5): 2144-2154.
  • 5Faa-JengLin, Po-HungShen, Song-LinYang, etal. TSK-type Recurrent Fuzzy Neural Network for DSP-based Permanent Magnet Linear Synchronous Motor Servo Drive [ J ]. IEE Proc. Electric Power Applications, accepted, 2006.
  • 6F. J. Lin, S. L. Yang, P. H. Shen. Self-constructing Recurrent Neural Network for DSP-based Permanent-magnet Linear Synchronous-motor Servo Drive [ J]. IEE Proc. Electric Power Appl, 2006, 1(2): 236-246.
  • 7F. J. Lin, R. J. Wai, K, K. Shyu, et al. Recurrent Fuzzy Neural Network Control for Piezoelectric Ceramic Linear Ultrasonic Motor Drive [ J ]. IEEETrans. Ultrason. , Ferroelect. , Contr. , 2001, 48(4): 900-913.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部