期刊文献+

基于二阶Godunov格式的SPH方法模拟弹塑性波的传播 被引量:1

Simulation of elastic-plastic wave propagation based on smoothed particle hydrodynamics method with second order Godunov scheme
下载PDF
导出
摘要 针对一阶Godunov格式的SPH方法的计算精度和激波分辨率不高的问题,提出了二阶Godunov格式的SPH方法。新方法在求解相互作用的粒子间黎曼问题时,认为粒子内物理量呈线性分布,用线性插值后求得的值作为黎曼问题的初始值,然后把黎曼解和Taylor展开引入到SPH方法中。应用新方法对一维弹塑性应力波的传播进行了数值模拟,并与一阶Godunov格式的SPH方法进行比较.计算结果显示新方法有效地提高了计算精度和激波分辨率,同时验证了它的稳定性。 A second-order Godunov-scheme SPH method was proposed to achieve higher accuracy and steeper representation of wave fronts than those calculated with first-order Godunov-scheme SPH method.The distribution of physical variables inside each particle was represented with a linear function using the proposed method.Therefore,the physical values at particle boundaries calculated through linear interpolation were used as the initial values of a Riemann problem between interacting particles.Riemann solvers and Taylor series were then introduced into the SPH method.One-dimensional problems of stress wave propagation were simulated with both first-order and second-order Godunov-scheme SPH methods.The results showed that the proposed method effectively improves the solution accuracy and is stable in both cases of tension and compression.
出处 《振动与冲击》 EI CSCD 北大核心 2011年第2期60-64,76,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(10802097 10672180)
关键词 SPH Godunov格式 黎曼问题 TAYLOR展开 弹塑性应力波 smoothed particle hydrodynamics(SPH) Ggodunov scheme Riemann problem Taylor series elastic-plastic stress wave
  • 相关文献

参考文献15

  • 1Lucy L B.A numerical approach to the testing of the fission hypothesis[J].Astronomical J,1977,88:1013-1024.
  • 2Gingold R A,Monaghan J J.Smoothed particle hydrodynamics:theory and application to non-spherical stars[J].Mon Not Roy Astr Soc,1977,181:375-389.
  • 3Liu G R,Liu M B.Smoothed particle hydrodynamics:a meshfree particle method[M].韩旭,杨刚,强洪夫.光滑粒子流体动力学——一种无网格粒子法[M].长沙:湖南大学出版社,2005.
  • 4Monaghan J J,Gingold R A.Shock simulation by the particle method SPH[J].J Comput Phys,1983,52:374-389.
  • 5Parshikov A N,Medin S A.Smoothed particle hydrodynamics using interparticle contact algorithms[J],J Comput Phys,2002,180:358-382.
  • 6Godunov S K.A difference scheme for numerical computation of discontinuous solutions of fluid dynamics[J].Mat Sb,1959,47:271-293.
  • 7Chen J K,Beraun J E,Jih C J.A corrective smoothed particle method for boundary value problems in heat condition[J].Int J Numer Meth Engng,1999,46:231-252.
  • 8徐志宏,汤文辉,张若棋.改进的接触算法及其在光滑粒子流体动力学中的应用[J].国防科技大学学报,2006,28(4):32-36. 被引量:1
  • 9Dukowiez J K.A Genend,Non-iterative riemann solver for godunov's method[J].J Comput Plays,1985,61:119-137.
  • 10王肖钧,张刚明,刘文韬,周钟.弹塑性波计算中的光滑粒子法[J].爆炸与冲击,2002,22(2):97-103. 被引量:13

二级参考文献13

  • 1Lucy L B.A Numerical Approach to The Testing of The Fission Hypothesis[J].Astronomical J,1977,88:1013.
  • 2Gingold R A,Monaghan J J.Smoothed Particle Hydrodynamics:Theory and Application to Non-spherical Stars[J].Monthly Notices R Astronomy Soc,1977,181:375.
  • 3Monaghan J J,Gingold R A.Shock Simulation by The Particle Method SPH[J].J Comput Phys,1983,52:374.
  • 4Godunov S K.A Difference Scheme for Numerical Computation of Discontinuous Solutions of Fluid Dynamics[J].Mat.Sb.,1959,47:271.
  • 5Van Leer B.Towards the Ultimate Conserveation Difference Scheme.V.A Second-Order Sequel to Godunov's Method[J].J Comput Phys,1979,32:101.
  • 6Colella P,Woodward P.Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations[J].J Comput Phys,1984,54:174.
  • 7Parshikov A N,Medin S A,Loukashenko I I,et al.Improvements In SPH Method By Means of Interparticle Contact Algorithm and Analysis of Perforation Tests at Moderate Projectile Velocities[J].Int J Impact Eneng,2000,24:779.
  • 8Chen J K,Beraun J E,Jih C J.An Improvement for Tensile Instability in Smoothed Particle Hydrodynamics[J].Computational Mechanics,1999,23:279.
  • 9Dukowicz J K.A General,Non-Iterative Riemann Solver for Godunov's Method[J].J Comput Phys,1985,61:119.
  • 10Randles P W,Libersky L D.Smoothed Particle Hydrodynamics:Some Recent Improvements and applications[J].Comput Methods Appl Mech Engrg,1996,61:375.

共引文献13

同被引文献15

  • 1许庆新,沈荣瀛,周海亭.SPH方法在剪切式碰撞能量吸收器中的应用[J].振动与冲击,2007,26(9):108-111. 被引量:4
  • 2Gingold R A , Monaghan J J. Smoothed particle hydro- dynamics: theory and application to non-spherical stars[J]. Monthly Notices R. Astronomy Soc., 1977, 181: 375- 389.
  • 3Oger G, Doring M, Alessandrini B,et al. Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2006, (213): 803-822.
  • 4John O H. Theoretical manual[M]. Livermore Software Technology Corporation(LSTC), 1998.
  • 5Antoci C, Gallati M, Sibilla S.Numerical simulation of fluid- structure interaction by SPH[J]. Computers and Structures, 2007, 85: 879-890.
  • 6Rafiee A, Thiagarajan K P. An SPH projection method for simulating fluid-hypoelastic structure interaction[J]. Comput Methods Appl Mech. Engrg., 2009, 198: 2785-2795.
  • 7Amini Y, Emdad H. Farid M. A new model to solve fluid-hypo-elastic solid interaction using the smoothed particle hydrodynamics (SPH) method [J]. European Journal of Mechanics B/Fluid,2011, 30: 184-194.
  • 8Monaghan J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110: 399-406.
  • 9Swegle J W, Attaway S W. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations[R]. New Mexico,US: SAND95-0311, Sandia, Albuquerque, 1995.
  • 10Gray J P, Monaghan J J, Swift R P. SPH elastic dynamics [J]. Comput. Methods Appl. Mech. Eng., 2001, 190: 6641-6662.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部