期刊文献+

神经网络径流预报模型中基于互信息的预报因子选择方法 被引量:35

Mutual information-based input variable selection method for runoff-forecasting neural network model
原文传递
导出
摘要 神经网络在径流预报中得到了广泛应用并取得了良好效果,其关键问题之一是输入变量(预报因子)选择,但这一问题通常没有受到重视。本研究基于互信息的概念探讨了如何选择径流预报输入变量,并结合三峡工程建成前长江干流宜昌水文站的日径流预报进行了研究。结果表明,基于互信息能够有效地判断待选预报因子(输入变量)与预报变量之间的相互关系,以帮助选择神经网络预报模型的输入变量,从而提高径流预报的精度。 Neural network is one of the popular and effective models used for hydrological forecasting.One of the major problems of this method is the selection of input variables.This study focuses on this problem and uses the mutual information(MI) to select neural network input variables.Application to the daily discharge forecasting at the Yichang hydrological station before the Three Gorges project shows that MI is an effective technique for selecting the input variables and thus for improving the runoff forecasting accuracy.
出处 《水力发电学报》 EI CSCD 北大核心 2011年第1期24-30,共7页 Journal of Hydroelectric Engineering
基金 国家“十一五”科技支撑计划项目(2006BAB05B04,2008BAB29B08)
关键词 互信息 预报变量选择 神经网络 径流预报 mutual information input variable selection neural network runoff forecast
  • 相关文献

参考文献10

  • 1SIMon HYKIN.神经网络原理[M].叶世伟,史忠植译.北京:机械工业出版社,2004.
  • 2Maier, H. R. and G. C. Dandy. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications [ J]. Environmental Modelling & Software, 2000, 15( 1 ) : 101 -124. (in Chinese).
  • 3张晓伟,沈冰,黄领梅.基于BP神经网络的灰色自记忆径流预测模型[J].水力发电学报,2009,28(1):68-71. 被引量:19
  • 4李致家,周轶,李志龙,马振坤.小波变换与BP神经网络耦合的洪水预报方法[J].水力发电学报,2009,28(2):20-24. 被引量:11
  • 5冯平,丁志宏,韩瑞光,张建伟.基于EMD的降雨径流神经网络预测模型[J].系统工程理论与实践,2009,29(1):152-158. 被引量:29
  • 6Bowden, G. J, G. C. Dandy, Maier, H. R. Input determination for neural network models in water resources applications. Part 1- background and methodology [ J ]. Journal of Hydrology, 2005, 301 ( 1 - 4) : 75 - 92.
  • 7Sharma, A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1 - A strategy for system predictor identification [ J ]. Journal of Hydrology, 2000, 239 (1 -4) : 232 - 239.
  • 8Sharma, A, K. C. Luk, Cordery I. Lall U. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management : Part 2 - Predictor identification of quarterly rainfall using ocean-atmosphere information [ J ]. Journal of Hydrology, 2000, 239 ( 1 - 4) : 240 - 248.
  • 9May, R. J, Maier H. R, Dandy, G. C, Fernando, T. M. K. G, Non-linear variable selection for artificial neural networks using partial mutual information [ J]. Environmental Modelling & Software, 2008, 23 ( 10 - 11 ) : 1312 - 1326.
  • 10Femando, T, H. R. Maier, Dandy, G. C.. Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach [ J]. Journal of Hydrology, 2009, 367 (3 -4) : 165 - 176.

二级参考文献25

共引文献129

同被引文献453

引证文献35

二级引证文献278

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部