期刊文献+

基于自适应遗传算法的特征基因选择 被引量:3

A Feature Gene Selection Algorithm Based On Adaptive Genetic Algorithm
下载PDF
导出
摘要 提出了一种基于自适应遗传算法的特征基因选择方法,首先建立一个基于Bhattacharyya距离的基因差异度模型,根据支持向量机(SVM)分类器的分类准确率选择出一个候选特征基因子集,然后利用自适应遗传算法搜索出一组最优特征基因组合,有效避免了遗传算法早熟收敛的缺陷,提高了全局寻优能力。对结肠癌基因表达谱数据进行仿真实验,分类准确率达到了94.6%,表明方法的可行性和有效性。 proposed a feature gene selection algorithm based on adaptive Genetic Algorithm. Firstly, created a genetic difference model based on Bhattacharyya distance and choose a candidate gene set that contained 50 genes according to SVM classifier accuracy. Secondly, selected some feature genes using adaptive Genetic Algorithm avoiding premature convergence. Using this method on experiment on colon cancer gene expression data, the classification accuracy rate ar- rives at 94.6% when the feature genes are four. So the experiment results show the method is feasible and effective.
出处 《科技通报》 北大核心 2011年第2期241-245,共5页 Bulletin of Science and Technology
关键词 基因表达谱 特征基因 自适应遗传算法 支持向量机 gene expression feature gene adaptive genetic algorithm support vector machine
  • 相关文献

参考文献13

  • 1张军英,Y.J.Wang,J.Khan,R.Clarke.基于类别空间的基因选择[J].中国科学(E辑),2003,33(12):1125-1137. 被引量:9
  • 2Khan J,Wei J S,Ringner M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J].Nature Medicine,2001,7(2):673-678.
  • 3Guyon I,Weston J,Bamhill S,et al.Gene selection for cancer classification using support vector machines[J].Machine Learning,2002,46(3):389-421.
  • 4Jain A,Zongker F.Feature selection;Evaluation,application,and small sample performance[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(2):153-156.
  • 5Choi K.Input feature selection for classification problems[J].IEEE Trans on Neural Networks,2002,13(1):144-158.
  • 6Li L,Weinberg C R,Darden T A,et al.Gene selection for sample classification based on gene expression data:study of sensitivity to choice of parameters of the GA/KNN method[J].Bioinformatics,2001,17 (12):1131-1142.
  • 7申伟科,钟理,葛昆,张波,王建飞,张小刚,秦向东.癌症基因表达谱挖掘中的特征基因选择算法GA/WV[J].生物信息学,2010,8(2):98-103. 被引量:1
  • 8Duda OR,Hart PE,Stork GD.Pattern Classification[M].Second Edition.New York:John wiley & Sons.2001:46-48.
  • 9Tan A C,Naiman D Q,Xu L,et al.Simple decision rules for classifying human cancers from gene expression profiles[J].Bioinformatics,2005,21(20):3896-3904.
  • 10Yu J,Yu J,Almal A A,et al.Feature selection and molecular classification of cancer using genetic programming[J].Neoplasia,2007,9(4):292-303.

二级参考文献68

  • 1唐强,王建元,朱志强.基于粒子群优化的三维突防航迹规划仿真研究[J].系统仿真学报,2004,16(9):2033-2036. 被引量:53
  • 2李娜,张海.基于遗传算法的军用飞行器航迹规划[J].战术导弹控制技术,2004(3):86-89. 被引量:5
  • 3李栋,曹义华,冯婷.基于地形特征的简易地形模拟算法[J].航空计算技术,2005,35(2):32-35. 被引量:8
  • 4马云红,周德云.基于遗传算法的无人机航路规划[J].电光与控制,2005,12(5):24-27. 被引量:60
  • 5张红,卢广山,朱荣刚.无人作战飞机任务系统技术研究[J].电光与控制,2006,13(1):55-59. 被引量:25
  • 6Wingo PA, Thun M J, Ries LA, et al. Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends [J]. J Natl Cancer Inst, 2001, 93:824- 842.
  • 7Saeys Y, Inza I, Larran-age P. A review of feature selection techniques in bioinformatics [J]. Bioinformatics, 2007, 23(19) : 2507 - 2517.
  • 8Kononenko I, Robnik-Sikonja M, Pompe U. ReliefF for estimation and discretization of attributes in classification, regression, and ILP problems [A]. In: Artificial Intelligence: Methodology, Systems, Applications: Proceedings of AIMSA' 96 [ C ]. Amsterdam: lOS Press, 1996.31 - 40.
  • 9John GH, Kohavi R, Pfleger K. Irrelevant features and the subset selection problem [ A ]. In: Proceedings of the Eleventh International Conference on Machine Learning [ C ], San Francisco: Morgan Kanfmann, 1994. 121 - 129.
  • 10Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines [J]. Machine Learning, 2002, 46:389 - 422.

共引文献18

同被引文献14

  • 1于秀霞,赵建平.分布式数据库直接连接查询优化算法的研究[J].长春理工大学学报(自然科学版),2005,28(3):55-57. 被引量:8
  • 2王凌.车间调度及其遗传算法[M].北京:清华大学出版社,2002..
  • 3Dean,Jeffrey,and Sanjay Ghemawat.MapReduce:simpli-fied data processing on large clusters[J].Communicationsof the ACM,2008,51(1):107-113.
  • 4Liu,Huawen,et al.Feature selection with dynamic mutualinformation.[J]Pattern Recognition,2009,42(7):1330-1339.
  • 5Hua,Jianping,Waibhav D.Tembe,and Edward R.Dougherty.Performance of feature-selection methods inthe classification of high-dimension data[J].PatternRecognition,2009,42(3):409-424.
  • 6Wu,Fei,Ying Yuan,and Yueting Zhuang.Heterogeneousfeature selection by group lasso with logistic regression[C]//.Proceedings of the international conference on Multi-media.ACM,2010.
  • 7Pal,Mahesh.Multinomial logistic regression-based featureselection for hyperspectral data[J].International Journal ofApplied Earth Observation and Geoinformation,2012,14(1):214-220.
  • 8徐济惠.嵌入式数据库多连接查询优化算法的研究[J].宁波大学学报(理工版),2008,21(2):206-210. 被引量:4
  • 9谢鲲,文吉刚,张大方,谢高岗.布鲁姆过滤器查询算法[J].软件学报,2009,20(1):96-108. 被引量:34
  • 10帅训波,马书南,周相广,龚安.基于遗传算法的分布式数据库查询优化研究[J].小型微型计算机系统,2009,30(8):1600-1604. 被引量:23

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部