期刊文献+

基于航迹隶属度的分布式系统数据融合算法 被引量:14

Distributed System Data Fusion Algorithm Based on Track Fuzzy Membership
下载PDF
导出
摘要 航迹关联与航迹融合是分布式目标跟踪系统数据融合的关键。本文研究了基于航迹隶属度的数据融合算法。综合各传感器航迹估计形成的目标运动状态特征向量与传感器分辨率,根据模糊聚类算法建立各观测时刻航迹隶属度矩阵与系统航迹关联决策矩阵,解决融合中心航迹关联问题。根据加权融合算法思想,结合各观测时刻航迹隶属度矩阵,实时、动态分配航迹号集合中各局部航迹权值,解决目标航迹融合问题。蒙特卡罗仿真表明,算法航迹关联效果明显优于加权航迹关联算法,并得到与简单航迹融合算法一致的目标融合航迹。 Track association and track fusion are the key problems of data fusion in distributed target tracking system.A data fusion algorithm based on track fuzzy membership is studied.By integrating the moving estimation character vector provided by track estimation of each local sensor and the performance of sensor resolution,track fuzzy membership matrix and systemic track association decision matrix at every measurement time are established according to Fuzzy Clustering Method(FCM),then problem of track association in fusion center is solved.Combining with the idea of weighted fusion algorithm and track fuzzy membership matrix at every measurement time,real time and dynamic weighting factors of all local tracks in track aggregation are alloted,and problem of track fusion is solved.Monte Carlo simulation shows that proposed algorithm is superior to weighted track association algorithm,and tracking system can obtain the target fusion track that have same tracking performance of Simple Fusion(SF) algorithm.
作者 冉金和 张玉
出处 《信号处理》 CSCD 北大核心 2011年第2期226-229,共4页 Journal of Signal Processing
关键词 航迹关联 动态加权融合 航迹隶属度 数据融合 Track association Dynamic weighted fusion Track fuzzy membership Data fusion
  • 相关文献

参考文献7

  • 1Lance M.Kaplan,William Dale Blair,Yaakov Bar-Shalom.Simulations Studies of Multisensor Track Association and Fusion Methods[C].Proc.IEEE Aerospace Conf,2006.1-16.
  • 2何有,王国宏等.多传感器信息融合及应用[M].第二版.北京:电子工业出版社,2007.128-154.
  • 3邓蕴昊,张纳温.一种改进的加权融合算法[J].弹箭与制导学报,2008,28(6):311-313. 被引量:11
  • 4Jesus Gareia,Besade Jua A.Fuzzy Data Association for Image-Based Tracking in Dense Scenarios[C].Proc.of IEEE,2002.902-907.
  • 5郭睿,王翔,张弛,卜春光.基于新型AFCM的多传感器目标跟踪航迹融合[J].传感技术学报,2009,22(3):358-361. 被引量:4
  • 6Billur Barxhan,Birsel Ayrulu.Fuzzy Clustering and Enumeration of Target Type Based on Sonar Returns[J].Pat-tern Recognition,2004,37:189-199.
  • 7Li-Wei Fong.An adaptive Filter for Multi-sensor Track Fusion[C].ICSP 2008 Proceedings,2008.231-235.

二级参考文献7

  • 1Bar-Shalom Y, Fortmann T E. Tracking and Data Association [M]. New York, Academic Press, 1988.
  • 2Chang KC, Bar-Shalom Y. A Simplification of the JPDAM Algorithm[J]. IEEE Trans. on AC. 1986,31(10).
  • 3Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. New York.. Plenum Press, 1981.
  • 4Trivedi M M, Bezdek J C. Low-Level Segmentation of Aerial Images with Fuzzy Clustering[J]. IEEE Trans. SMC, 1986,4 (16) :589-598.
  • 5Singer R, Kanyuck. Computer Control of Multiple Site Track Correlation[J]. Automatica, 1971, (7).. 455-464.
  • 6杨万海.多传感器数据融合及其应用[M].西安:西安电子科技大学出版社,2000.4.
  • 7Wu Kuo-Lung, Yang Miin-Shen. Alternative C-Means Clustering Algorithms [J]. Pattern Recognition 35 (2002) : 2267- 2278.

共引文献13

同被引文献114

引证文献14

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部