期刊文献+

相干信号源DOA估计的一种改进SVD算法 被引量:1

Improved SVD Algorithm for DOA Estimation of Coherent Signal Source
下载PDF
导出
摘要 多重信号(MUSIC)算法是波达方向(DOA)估计中的一种标志性算法,在理想条件下具有良好的性能,但是当信号源相干时,算法的性能就会变得很差。为了使其在低信噪比、小角度条件下对相干信号源有着更好的分辨能力和稳定性,通过对解相干重要算法——矢量奇异值(SVD)算法的研究,并针对SVD算法在低信噪比、小角度条件下分辨能力的不足,提出了一种改进的矢量奇异值算法(NSVD),即利用信号协方差矩阵的最大特征矢量,按一定规则构造出新矩阵,然后对矩阵进行修正,再利用奇异值分解算法估计出信号相关信息。最后通过大量的计算机仿真证明了算法的良好性能。 MUSIC algorithm is one of the significant algorithms for spatial spectrum estimation.It works well with fine performance in the ideal condition,but if signal source is coherent,the result of algorithm would be bad.Basing on the research of SVD algorithm,a new algorithm named NSVD algorithm(that is using the maximum feature vector of the signal covariance matrix to construct a new matrix according to certain rules,then correct the matrix,use singular value decomposition algorithm to estimate the signal information) is proposed,which could work better when under the low-SNR and low-angle condition.At last,a good performance is verified through lots of computer emulation.
出处 《现代电子技术》 2011年第5期81-84,共4页 Modern Electronics Technique
基金 西北工业大学第一批基础研究基金项目(W018103):基于特征空间波束形成的特殊方法研究
关键词 空间谱估计 多重信号算法 矢量奇异值算法 相干信号源 spatial spectrum estimation MUSIC algorithm SVD algorithm coherent signal source
  • 相关文献

参考文献10

  • 1SHMIDT R O.Multiple emitter location and signal parameter estimation[J].IEEE Trans.on ASSP,1986,AP-34(3):276-280.
  • 2高世伟 保铮.利用数据矩阵分解实现对空间相干源的超分辨处理.通信学报,1988,9(1):4-13.
  • 3DI A.Multiple sources-location-a matrix decomposition approach[J].IEEE Trans.on ASSP,1985,33(4):1086-1091.
  • 4KRIM H,Viberg M.Two decades of array signal processing research[J].IEEE Signal Processing Magazine,1996,13(4):67-94.
  • 5STOICA P,Nehorai A.MUSIC,maximum likelihood,and Cramer-Rao bound[J].IEEE Trans.on ASSP,1989,37(5):720-741.
  • 6FRIEDLANDER B.A sensitivity analysis of the MUSIC algorithm[J].IEEE Trans.on ASSP,1990,38(10):1740-1751.
  • 7STUYZMAN W L,Thiele G A.Antenna theory and design[M].Chapter 3.[S.l.] :John Wiley & Sons,1981.
  • 8WANG H,Kaveh M.Estimation of angles-of-arrival for wideband sources[C].ICASSP,1984:751-754.
  • 9HAYKIN S.Array signal processing[M].Englewood Cliffs,NJ:Prentice-Hall,1995.
  • 10黄登山,王 顶.基于信号子空间的正交矢量谱估计新方法-OVSS法[J].西北工业大学学报,2002,20(1):62-65. 被引量:4

二级参考文献4

共引文献10

同被引文献12

  • 1PUSKA H,INATTIJ S I. Serial Search Code Acquisition Using An Art Antennas with Single Correlator or Matched Filter[J].IEEE Transactions on Communications,2008,(02):299-307.
  • 2PILLAI S U,KWON B H. Forward/Backward Smoothing Techniques For Coherent Signal Identification[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1989,(01):8-15.
  • 3DMOCHOWSKI J,BENESTY J,AFFES S. Direction of Arrival Estimation Using Eigenanalysis of the Parameterizde Spatial Correlation Matrix[A].Honolulu,Hawaii,USA,2007.1-4.
  • 4YE Zhong-fu,XIANG Li,XU Xu. DOA Estimation with Circular Array via Spatial Averaging algorithm[J].IEEE Antennas and Wireless Propagation Letters,2007.74-76.
  • 5XU Di-hua,CHEN Jian-wen,WU You. A Novel Subspace Coherent Signal Processing Algorithm for High-Resolution DOA Estimation[A].Yonago,Japan,2006.653-656.
  • 6DI A. Multiple Sources Location-A Matrix Decomposition Approach[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1985,(04):1086-1091.
  • 7HAN Fang-ming,ZHANG Xian-da. An ESPRIT-like Algorithm for Coherent DOA Estimation[J].IEEE Antennas and Wireless Propagation Letters,2005,(04):443-446.
  • 8LIU Li-guo;GAI Yi-bing;WANG Hai-song.An Improved ESPTIT-like Algorithm for Coherent Signal and Its Application for 2-D DOA Estimation[A]新加坡,20061-4.
  • 9SALAMEN A,BAGBY J. Angle of Arrival Estimation without EVD for Coherent Sources[A].St Petersburd:Russian,2008.1-4.
  • 10CAPON J. High-Resolution Frequency-Wave Number Spectrum Analysis[J].Proceedings of the IEEE,1969,(08):1408-1418.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部