期刊文献+

基于节点和包离散性的P2P应用分类模型

Classification Model of Peer-to-Peer Application Based on Node of Network and Discreteness of Packet
下载PDF
导出
摘要 在分析了不同应用类型的P2P业务所具有特征的基础上,提出了根据节点端口、节点总连接数以及数据包离散性3个参数将P2P业务分类的方法模型。得到通过节点端口检测分离出具有固定服务器地址或者利用固定端口通信的P2P业务,通过分析节点连接情况区分P2P和非P2P业务,通过分析数据包的离散性区分流传输类和文件共享类P2P业务的结果。 A classification model of P2P application is proposed.The method depends on three parameters: the communication IP or port,total numbers of the connected node,the discreteness of packet.The application which uses fixed server or communication with fixed port can be identified by using the first parameter;the second parameter can classify whether the flow is P2P;the last parameter can identify the P2P flow is P2P streaming or p2p file sharing.
出处 《现代电子技术》 2011年第5期121-124,共4页 Modern Electronics Technique
基金 国家自然科学基金(60972077)
关键词 节点 包离散性 P2P 节点连接 node discreteness of packet P2P nodes comection
  • 相关文献

参考文献4

二级参考文献33

  • 1SEN S, JIA W. Analyzing peer-to-peer traffic across large networks [J]. IEEE//ACM Transactions on Networking, 2004, 12(2): 219-232.
  • 2SAROIU S, GUMMADI P K, DUNN R J, GRIBBLE S D, LEVY H M. An analysis of internet content delivery systems[C]//5th Symposium on Operating Systems Design and Implementation, 2002.
  • 3KARAGIANNIS T, BROIDO A, BROWNLESS N, CLAFFY K, FALOUTSOS M. File-sharing in the internet: a characterization of P2P traffic in the backbone[R]. University of California, Riverside Department of Computer Science, Nov. 2003.
  • 4SEN S, SPATSCHECK O, WANG D. Accurate, scalable in-network identification of P2P traffic using application signatures[C]//Proceedings of the 13th International Conference on World Wide Web, New York, 2004: 512-521.
  • 5KARAGIANNIS T, BRODIO A, FALOUTSOS M, CLAFFY K. Transport layer identification of P2P traffic[C]// Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, Taormina, 2004: 121-134.
  • 6KARAGIANNIS T, PAPAGIANNAKI K, FALOUTSOS M. Blinc: multilevel traffic classification in the dark[C]// Philadelphia, Pennsylvania: SIGCOMM'05, 2005.
  • 7CONSTANTINOU F, MAVROMMANTIS P. Identifying known and unknown peer-to-peer traffic [C]// Proceedings of Fifth IEEE International Symposium on Network Computing and Applications (NCA 2006), Cambridge, Massachusetts, July 24-26, 2006: 93-102.
  • 8ZANDER S, NGUYEN T, ARMITAGE G. Automated traffic classification and application identification using machine learning[C]//Proceedings of the IEEE 30th Conference on Local Computer Networks (LCN 2005), Sydney, November 2005: 250-257.
  • 9ERMAN J, ARLITT M, MAHANTI A. Traffic classification using clustering algorithms[C]// Proceedings of SIGCOMM Workshop on Mining Network Data, Pisa, September 11-15, 2006: 281-286.
  • 10MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques[C]// Proceedings of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, Banff, Alberta, June 6-10, 2005: 50-60.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部