期刊文献+

小波图像修补技术在小麦NIR图像处理中的应用

Application of Wavelet Image Inpainting in Wheat NIR Image Processing
下载PDF
导出
摘要 在利用小波变换对小麦近红外图像处理的过程中存在小波系数缺损的问题,小波图像修补技术可以有效地恢复丢失小波系数。为此,针对小麦的近红外图像,引入了基于全变差(TV)的小波图像修补技术,分别对随机丢失5%和50%的小波系数的小麦种子进行近红外图像修补后,峰值信噪比PSNR分别由23.83dB和9.96dB提高到36.81dB和33.20dB。修补后的近红外图像中,小麦的轮廓及腹沟部分基本修补到接近原始图像,在种子的果毛、胚等包含纹理细节的部分修补效果不够理想。实验表明,基于全变差的小波图像修补技术可以恢复小麦近红外图像在处理过程中丢失的大部分系数,从而使得图像保存的信息更加完整。 During the processing of NIR images of wheat by wavelet transformation, the image quality is often influenced because of the losing of wavelet coefficients. Wavelet image inpainting could effectively reconstruct the lost coefficients. In this study, the total variation (TV) based wavelet image inpainting is applied to process the NIR images of wheat seeds. The wavelet coefficients were randomly lost 5% and 50%, respectively. After inpainting, the Peak Signal to Noise Ratio (PSNR) of the corresponding reconstructed images were improved from 23.83dB and 9.96dB to 36.81dB and 33.20dB, respectively. The profile and ventral groove of reconstructed wheat images were close to original images. The inpainting effect of the detail part such as seed hair and embryo were not perfect. The results showed that the total variation (TV) based wavelet image inpainting could get back most lost wavelet coefficients during the process of NIR images of wheat, thus make the preserved images have more information.
出处 《农机化研究》 北大核心 2011年第4期158-162,共5页 Journal of Agricultural Mechanization Research
基金 国家"863计划"项目(2006AA10Z202)
关键词 小麦 全变差 小波 图像修补 近红外 wheat total variation wavelet image inpainting near infrared
  • 相关文献

参考文献15

  • 1A A Gowen,C P O'Donnell,PJ Cullen,etal.Hyperspectral imaging-an emerging process analytical tool for food quality and safety control[J].Trends in Food Science& Technology,2007,18(12):590-598.
  • 2C Yang,J H Everitt,J M Bradford.Evaluating high resolution SPOT 5 satellite imagery to estimate crop yield[J].Precision Agriculture,2009,10 (4):292-303.
  • 3Paul Williams,Paul Geladi,Glen Fox,et al.Maize kernel hardness classification by near infrared (N1R) hyperspectral imaging and multivariate data analysis[J].Analytica Chimica Acta,2009,653(2):121-130.
  • 4Ming-hong Chen,Guo-ping Zhang,Hongxing Xia.Application of near-infrared image processing in agricultural engineering[J].Proceedings of the SPIE,2009,7489:748903-748903-7.
  • 5徐惠荣,应义斌.近红外图像和光谱分析技术在农产品品质无损检测中的应用与展望[J].浙江大学学报(农业与生命科学版),2002,28(4):460-464. 被引量:20
  • 6Laury Chaede,Dominique Van Der Straeten.Imaging techniques and the early detection of plant stress[J].Trends in Plant Science,2000,5 (11):495-501.
  • 7Jon-Joseph Q Armstrong,Richard D Dirks,Kevin D Gibson.The use of early season muhispectral images for weed detection in corn[J].Weed Technology,2007,21 (4):857-862.
  • 8邱白晶,刘保玲,吴春笃,史春建,李会芳.近红外图像处理技术在农业工程中的应用[J].农业工程学报,2005,21(5):102-106. 被引量:19
  • 9Hongxia Wu.Near infrared image de-noise based on lifting wavelets and context model[C] //[S.i] :ICALIP 2008.International Conference,2008:943-945.
  • 10S Arivazhagan,L Ganesan,T G Subash Kumar.Modified statistical approach for image fusion using wavelet transform[J].Signal,Image and Video Processing,2009,3 (2):137-144.

二级参考文献58

  • 1何东健,杨青,薛少平,熊运章.农产品分光反射特性及近红外图像处理在农业中的应用[J].农业工程学报,1996,12(4):80-84. 被引量:15
  • 2Jerome J W. Review of chemometrics applied to spectroscopy: 1985-95[J]. A ppl Spectrosc Rev, 1996,31(1 & 2):73-124.
  • 3Nils B B, Stefan R. The standardization of infratec 1221 near infrared trans mission instruments in the Danish network used for the determination of protein and moisture in grains[J]. Journal of Near Infrared Spectroscopy,1995, 3( 1):35-42.
  • 4Schmilovitch Z, Mizrach A, Hoffman A. Determination of ma ngo physiologycal i ndices by near infrared spectrometry[J]. Postharvest Biology and Technology , 2000,19(3):245-252.
  • 5Hirschfeld T, Stark E W. Near-Infrared Analysis of Foo dstuffs, in Analysis o f Foods and Be Verages. Modern Techniques[M].Washington: National Academy Press. 1984.505-551.
  • 6Osborne B G. Near infrared spectroscopic studies of starc h and water in some processed cereal foods[J]. Journal of Near Infrared Spectroscopy, 1996, 4 (4),195-200.
  • 7Larrahondo J E, Palau F, Navarrete A, et al. Benefits and analysis of near i nfrared spectroscopic applications in sugarcane[A]. Davies A M C, Giangiacom o R. Near Infrared Spectroscopy: Proceedings of the 9t h International Conference[C].Chichester,UK:NIR publications.1999.
  • 8Norris K H, Hart J R. Direct spectrophotometric determina tion of moisture co ntent of grain and seeds[J]. Journal of Near Infrared Spectroscopy,1996, 4 (1):23-30.
  • 9Snyman L D, Jourbert H W. Prediction of the chemical comp osition and in vitr o dry matter digestibility of a number of forages by near infrared reflectance s pectroscopy[J]. Suid Afrikaanse Tydskrifvir Veekunde,1993,23(1):20-23.
  • 10Edney M J, Morgan J E, Williams P C, et al. Analysis of feed barley by near infrared reflectance technology[J]. Journal of Near Infrared Spectroscopy ,1994, 2 (1):33-42.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部