期刊文献+

加权伪噪声子空间投影的修正MUSIC算法 被引量:10

Modified MUSIC approach with weighted pseudo-noise subspace projection
下载PDF
导出
摘要 多重信号分类(multiple signal classification:MUSIC)方法通过计算搜索导向矢量与噪声或信号子空间的距离来估计波达方向,对采样协方差矩阵的依赖性较大。在小快拍或存在强弱临近信号条件下,采样协方差矩阵的估计值与真实值通常存在较大差异,导致估计的噪声或信号子空间发生畸变,严重恶化了MUSIC方法的波达角估计性能。针对该问题,本文提出采用加权伪噪声子空间投影的改进方法(称为wpnMUSIC)。该方法在修正数据相关矩阵的基础上估计与搜索导向矢量对应的伪噪声子空间并利用其在伪噪声子空间的投影值对MUSIC空间谱进行加权处理,在保持子空间处理方法高分辨能力的同时改善了对小快拍和强弱信号的稳健性。理论分析和仿真实验表明本文方法对强弱临近目标的分辨能力优于MUSIC方法。 The direction-of-arrival(DOA) can be estimated as measured the distance between each search steering vector and the noise subspace or signal subspace with MUSIC algorithm.Therefore,the subspace deviation which associated with the correlation matrix will deteriorate the performance of MUSIC algorithm.To alleviate this decreasing in DOA estimation with secondary data deficient scenario and/or strong and weak signal coexistence,a new method based on pseudo-noise subspace projection is presented.The approach is performed in two stages.First,we employ a modified correlation matrix at each search steering vector to calculate the pseudonoise subspace,then,the spatial spectrum can be obtained as weighted the MUSIC spectrum with the projection value of the search steering vector on the corresponding pseudo-noise subspace.The high-resolution of subspace processing is remained and the robustness against small sample support and in the presence of strong signal and weak signal is improved.Theoretical analysis and numerical simulation indicate that its performance is better than that of MUSIC.
出处 《信号处理》 CSCD 北大核心 2011年第1期1-5,共5页 Journal of Signal Processing
基金 国家自然科学基金(60901066) 国家杰出青年基金(0825104) 长江学者和创新团队发展计划(IRT-0954) 国防预研基金(9140C0101081001)联合资助
关键词 阵列信号处理 波达方向估计 子空间投影 array signal processing direction-of-arrival estimation subspace projection
  • 相关文献

参考文献12

  • 1Krim H,Viberg M.Two decades of array signal processing research,IEEE Signal Processing Magazine,1996,13(4),pp:67-94.
  • 2Stoica P,Nehorai A.Maximum likelihood methods for direetion-of-arrival estimation,IEEE Trans on ASSP,1990,38(7),pp:1132-1143.
  • 3Schmidt R.O.,Multiple emitter location and signal parameter estimation,IEEE Trans on Antenna Propagation.,1986,34(3),pp:276-280.
  • 4Roy R,Kailath T.,ESPRIT-estimation of signal parameters via rotational invariance techniques,IEEE Trans on ASSP,1989,37(7),pp:984-995.
  • 5Kim K.J.,Sarkar T.K.,Wang H.,Palma M.S.,Direction of arrival estimation based on temporal and spatial processing using a direct data domain approach,IEEE Trans on Antenna Propagation,2004,52(2),pp:533-541.
  • 6Kim J.T.,Moon S.H.,Han D.S.,Chao M.J,Fast DOA estimation algorithm using pseudo-covariance matrix,IEEE Trans on Antenna Propagation,2005,53(4),pp:1346-1351.
  • 7Grover R.,Pados D.A.,Medley M.J.,Subspace direction finding with an auxiliary-vector basis,IEEE Trans on Signal Process.,2007,55(2),pp:758-763.
  • 8程正东,罗景青,樊祥,马东辉.信号源功率不一致对MUSIC算法分辨性能的影响[J].电子与信息学报,2008,30(5):1088-1091. 被引量:12
  • 9McCloud M.L.,ScharfL.L.,A new subspace identification algorithm for high resolution DOA estimation,IEEE Trans on Antenna and Propagation,2002,50(10),pp:1382-1390.
  • 10王布宏,王永良,陈辉.利用局域子空间投影提高子空间类DOA估计算法的谱分辨力[J].电子学报,2003,31(3):459-463. 被引量:13

二级参考文献20

  • 1Johnson D H. The application of spectral estimation to bearing estimation problems [J]. Proc. IEEE,1982,70:1018 - 1028.
  • 2Barabell A J, Capon J. Performance comparison of superresolution array processing algorithm[R]. Tech. Rep. TST - 72, Lincoln Lab. , MIT, 1984.
  • 3Stoica P, Nehorai A. Perfomance comparison of subspace rotation and MUSIC methods for direction estimation[J]. IEEE Trans. on SP ,1991,39(2) :446 - 453.
  • 4Rao B D, Hari K V S. Weighted subspace methods and spatial smoothing: analysis and comparison[J]. IEEE Trans. on SP, 1993,41 (2) :788 - 803.
  • 5Ren Q S,Willis A J. Fast root-MUSIC algorithm[J]. IEE Electronics Letters, 1997,33(6) :450 - 451.
  • 6Schmidt R O. Multiple emitter location and signal parameter estimation[J] IEEE Trans. on AP ,1986,34(3):276 - 280.
  • 7CAPON J. High resolution frequency-wavenumber spectrum analysis[J]. Proceedings of IEEE, 1969,57(8) : 1408 - 1418.
  • 8LACOSS R.Data adaptive spectral analysis methods[J]. Geophys, 1971,36(4) :661 - 675.
  • 9LI J, Stoica P. An adaptive filtering approach to spectral estimation and SAR imaging[ J ]. IEEE Transactions on Signal Processing, 1996,44(6) : 1469 - 1484.
  • 10ABRAMOVICH Y I, GRAY D A, GOROKHOV A Y, SPENCER N K.Positive-definite Toeplitz completion in DOA estimation for fully augmentation nonuniform linear antenna arrays[ A ]. IEEE. Proceedings of the 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP[ C ]. Atlanta, GA, USA: IEEE, 1996.2551 - 2554.

共引文献32

同被引文献93

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部