期刊文献+

基于光谱加权直推式支持向量机的高光谱图像半监督分类 被引量:1

Semisupervised Classification of Hyperspectral Image Based on Spectrally Weighted TSVM
下载PDF
导出
摘要 高光谱图像分类中有标签样本获取较为困难,而半监督分类可以利用到大量未标签样本所含信息,来提高分类准确率。直推式支持向量机是标准支持向量机在半监督学习问题上的一种扩展。本文采用凹凸过程规划将直推式支持向量机的非凸目标函数分解为凸函数和凹函数的组合,将非凸问题转化为凸优化问题求解。并且针对高光谱图像不同波段鉴别地物类别的能力的差异,为了充分利用各个波段的分类能力,引入了光谱权值的概念,探讨了两类分类和多类分类的权值估计策略。对不同的波段赋予不同的权值,从而改进了直推式支持向量机的核函数。实验表明了本文提出算法的优越性,适用于较大规模的高光谱图像分类。 In hyperspectral image classification,labeled samples are difficult to obtain.Semisupervised classification methods can make use of the information contained in the large number of unlabeled samples to improve classification accuracy.Transductive support vector machine(TSVM) is an extension of support vector machine(SVM) in semisupervised learning.In this paper we use Concave-Convex Procedure(CCCP) to optimize the nonconvex objective function of TSVM.The noconvex function is decomposed into the combination of convex part and concave part.So the problem is changed into a convex optimization problem.In hyperspectral image, each band's ability to distinguish materials is not in the same range.In order to make better use of bands' classification abilities, the spectrally weighted vector is introduced.The evaluated approaches of weighted values for two classes and multi classes are introduced. As a result,different bands are assigned different weighted values.Then the kernel function is modified by the spectrally weighted vector.Experiments prove the proposed method' s superiorities.Thus the proposed method can be applicable to large-scale hyperspectral image classification.
出处 《信号处理》 CSCD 北大核心 2011年第1期122-127,共6页 Journal of Signal Processing
基金 国家自然科学基金(40901216) 国防科技大学博士研究生创新基金(B100402)资助
关键词 半监督 直推式 凹凸过程优化 光谱加权 semisupervised transductive Concave-Convex Procedure spectrally weighted
  • 相关文献

参考文献11

  • 1V.N.Vapnik.Statistical Leaxning Theory.New York:Wiley,1998.
  • 2L.Bruzzone,M.Chi,and M.Marconcini.A novel transductive SVM for semisupervised classification of remotesensing images[J].IEEE Trans.Geosei.RemoteSens.,2006,44(11):3363-3373.
  • 3M.Marconcini,G.Camps-Vails,and L.Bruzzone.A Composite Semisupervised SVM for Classification of Hyperspectral Images[J].IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2009,6(2):234-238.
  • 4T.Joachims.Transductive inference for text classification using support vector machines[C].in Proc.ICML,San Francisco,:Morgan Kaufmann,1999:200-209.
  • 5R.Collobert,F.Sinz,and J.Weston,et al.Large scale transductive SVMs[J].Journal of Machine Learning Research,2006,7:1687-1712.
  • 6M.Chi,L.Bruzzone.Semi-supervised classification of hyperspectral images by SVMs optimized in the primal.IEEE Trans.Geosci.Remote Sens.,2007,6(45):1870-1880.
  • 7B.Guo,S.R.Gunn,and R.I.Damper,et al.Customizing Kernel Functions for SVM-Based Hyperspectral Image Classification[J].IEEE Transactions On Image Processing,2008,17(4):622-639.
  • 8廖东平,魏玺章,黎湘,庄钊文.一种改进的渐进直推式支持向量机分类学习算法[J].信号处理,2008,24(2):213-218. 被引量:11
  • 9ftp://ftp.ecn.purdue.edu/biehl/MuhiSpec/92AV3C/.
  • 10A.Plaza et al.,Recent advances in techniques for hyperspectral image processing[J].Remote Sensing of Environment,2009,113:110-122.

二级参考文献11

  • 1Vapnik V. N, The Nature of Statistical Learning Theory [M], New York : Springer, 1995.
  • 2Vapnik V. N, Statistical Learning Theory [ M ] , New York: John Wiley and Sons, 1998.
  • 3Gammerman A, Vapnik V. N, Vowk V, Learning by Transduction[ C ], Proceedings of the 14^th International Conference on Uncertainty in Artificial Intelligence, Wisconsin, 1998 : 148-156.
  • 4Joachims T, Transductive Inference for Text Classification Using Support Vector Machines [ C ], Proceedings of the 16th International Conference on Machine Learning, San Francisco : Morgan Kaufmann Publishers, 1999 -200-209.
  • 5Chen Yisong,Wang Guoping, Dong Shihai, Learning with Progressive Transductive Support Vector Machine [ C ], IEEE International Conference on Data Mining, Maebashi City,Japan ,2002:67-74.
  • 6Blum A, Mitchell T, Combining Labeled and Unlabeled Data with Co-training [C], Annual Conference on Computational Learning Theory, 1998:92-100.
  • 7Nigam K, McCallum A, Mitchell T, Learning to Classify Text from Labeled and Unlabeled Documents [ C ] , Proceedings of the AAAI, 1998:792-799.
  • 8斯皮戈尔 M.R,斯蒂芬斯 L.J著,统计学[M],杨纪龙,杜秀丽,姚奕,赵嫒嫒,梁志彬译,北京:科学出版社.2002.
  • 9冀振元,孟宪德.轮式车与履带车目标的识别[J].现代雷达,1999,21(6):17-21. 被引量:9
  • 10陈毅松,汪国平,董士海.基于支持向量机的渐进直推式分类学习算法[J].软件学报,2003,14(3):451-460. 被引量:88

共引文献10

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部