期刊文献+

时域有限差分法数值仿真单光镊中微球受到的光阱力 被引量:4

FDTD numerical simulation of the trapping force of microsphere in single optical tweezers
原文传递
导出
摘要 本文采用三维时域有限差分法(FDTD)和Maxwell应力张量法建立了单光镊在焦点附近俘获球形微粒的光阱力模型,采用基于球矢量波函数(VSWF)的五阶高斯光源作为仿真光源,得到了准确的光场传播.讨论了光源的波长、束腰、偏振态和微球的半径、折射率对光阱力的影响,分析了在单光镊俘获微球时,邻近微球对光阱力的影响.特别研究了光源的偏振态对微球所受光阱力的作用效果,仿真结果表明圆偏振光比线偏振光对微球的俘获力更大;被光镊稳定俘获的微球,会受到邻近微球干扰,失去平衡状态,改变光源的偏振态可以改变微球的受力状态. In this paper the model of trapping force on microsphere near focus in single optical tweezers is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods. Fifth order Gaussian beam based on spherical vector wave function ( VSWF) is adopted as simulation light source; the correct light field transmission is obtained. The influences of the wavelength,waist and polarization of light sources,the radius and refractive index of the microsphere on the optical trapping force are discussed. The influence of nearby microsphere and beam polarization on the trapping force of the trapped microsphere in single optical tweezers is analyzed. The effect of beam polarization working on the trapping force of the trapped microsphere is specially analyzed. As results of simulation,the trapping force acting on the microsphere by the circularly polarized beam is larger than that by the linearly polarized beam. The stability of the trapped microsphere in single optical tweezers will be disturbed by the nearby microsphere and lose its balance. Varying the beam polarization will lead to the change of the trapping force of the trapped microsphere.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第3期39-44,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:50975271)资助的课题~~
关键词 光镊 光阱力 介质微球 时域有限差分法(FDTD) optical tweezers optical trapping force dielectric microsphere FDTD
  • 相关文献

参考文献2

二级参考文献27

共引文献23

同被引文献100

  • 1白璐,吴振森,陈辉,郭立新.高斯波束入射下串粒子的散射问题[J].物理学报,2005,54(5):2025-2029. 被引量:9
  • 2朱杰,孙润广.激光光镊技术在单细胞、单分子科学中的应用研究[J].激光杂志,2005,26(6):90-91. 被引量:15
  • 3徐飞,顾松山,陈玉林.用T矩阵方法计算超椭球粒子的电磁散射特性[J].南京气象学院学报,2005,28(6):815-820. 被引量:6
  • 4Dao M, Lim C T, Suresh S. Mechanics of the human red blood cell deformed by optical tweezers[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(11-12): 2259-2280.
  • 5Zhong M C, Wei X B, Zhou J H, et al: Trapping red blood cells in living animals using optical tweezers[J]. Nat Commun, 2013, 4: 1768.
  • 6Reis L A, Ramos E B, Rocha M S. DNA interaction with diaminobenzidine studied with optical tweezers and dynamic fight scattering[J]. The Journal of Physical Chemistry B, 2013, 117(46): 14345-14350.
  • 7Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime[J]. Biophysical Journal, 1992, 61(2): 569-582.
  • 8Lock James A. Calculation of the radiation trapping force for laser tweezers by use of generalized lorenz-mie theory. I. localized model description of an on-axis tightly focused laser beam with spherical aberration[J]. Appl Opt, 2004, 43 (12): 2532-2544.
  • 9White Daniel A. Numerical modeling of optical gradient traps using the vector finite element method[J]. Journal of Computational Physics, 2000, 159(1): 13-37.
  • 10Kopacz Adrian M, Patankar Neelesh A, Liu Wing K. The immersed molecular finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 233 - 236: 28-39.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部