期刊文献+

随机波动模型的参数估计方法

Estimation method of parameter for stochastic volatility(SV)model
下载PDF
导出
摘要 随机波动(SV)模型是研究金融收益率波动性的一种重要模型,但该模型没有精确的似然函数表达式,对其进行研究具有一定的挑战性。将近十几年来国内外学者提出的不同参数估计方法分为2类,讨论了各种方法的优缺点,并对其给予了评价。 Stochastic volatility (SV) is one of the very important models for researching the volatility of financial returns, but its main problem is that the likelihood function is hard to evaluate. It is considered to be a challenge to make researches in this problem. Estimation method of parameter in recent decade can be put into two kinds, whose advantages and disadvantages are discussed in this paper.
作者 卢素 刘金山
出处 《佛山科学技术学院学报(自然科学版)》 CAS 2011年第1期43-46,共4页 Journal of Foshan University(Natural Science Edition)
关键词 SV模型 金融收益率 随机波动 估计方法 SV model the volatility of financial returns stochastic volatility estimation method
  • 相关文献

参考文献5

二级参考文献20

  • 1Engle,R E. Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation[J]. Econometrica, 1982, 50:987-1008.
  • 2Bollerslev, T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31:307-327.
  • 3Taylor, S. J. Financial returns modeled by the product of two stochastic processes-a study of the daily sugar prices, Time Series Analysis: Theory and Practice [M]. North-Holland: Amsterdam Press,1982:203-226.
  • 4Zhang Shi-ying, Fan Zhi. Cointegration Theory and Volatility Models: Financial Time Series Analysis and Application [ M ] Beijing:Tsinghua University Press, 2004:308-322.
  • 5Christian P. Robert, George Casella. Monte Carlo Statistical Mothods [M]. New York :Springer-Verlag Press, 1999:203-245.
  • 6Spiegelhalter, D. J Thomas, A. Best, N. G., Gilks, W. R. BUGS 0.5 Bayesian inference using Gibbs sampling [M]. UK.Cambridge: MRC Biostatistics Unit Press, 1996:101-135.
  • 7Kim, S., Shephard, N., Chib, S. Stochastic volatility: likelihood inference and comparison with ARCH models[J]. Review of Economic Studies , 1998, 65:PP361-393.
  • 8Fruhwirth-Schnatter S.Applied state space model-ling of non-Gaussian time series using integration-based Kalman filtering[J].Statistics and Computing,1994,4:259~269.
  • 9Sandmann G, Koopman S J. Estimation of stochastic volatility models via Monte Carlo Maximum Likelihood[J]. Journal of Econometrics,1998,87:271~301.
  • 10Danielsson J. Stochastic volatility in asset prices:esti-mation with simulated maximum likelihood[J]. Journal of Econometrics,1994,61:375~400.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部