期刊文献+

一类新型差分进化算法范式 被引量:3

Novel differential evolution model
下载PDF
导出
摘要 提出了一类新差分进化算法范式,其核心内容是提出了一种基于动态邻居搜索的进化模式,平衡局部和全局搜索之间的矛盾,同时探讨了种群拓扑结构对其通讯和信息继承和扩散的影响,用基于该范式的一种具体算法对8经典测试函数进行了实验。仿真结果表明,与传统的差分进化算法相比较,该算法的求解质量、稳定性及其速度等方面均具有明显的优势。 A novel differential evolution model has been proposed,the key is the new evolution strategy based on neighbor search is constructed, which balances the contradiction of local and global search, and population topological structure influence on the communication, information inheriting and diffusing has also been discussed.Finally, a specific differential evolution derived from novel modal has been designed,compared with the original DE,the simulation results on 8 classical benchmark functions demonstrates that the proposed algorithm has obvious advantages in the solution-quality,stability and speed.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第6期5-7,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.60873017~~
关键词 差分进化算法 邻居搜索 拓扑结构 稳定性 differential evolution neighbor search topological structure stability
  • 相关文献

参考文献5

  • 1Store R, Price K V.Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces, Tamil Nadu Tech Report TR-95-012[R].Institute of Company Secretaries of India, Chennai,1995.
  • 2Abbass H A.The self-adaptive Pareto differential evolution[C]//Proc of the 2002 Congress on Evolutionary Computation(CEC2002). New York:IEEE Service Center,2002,1:831-836.
  • 3Qin A K,Huang V L,Suganthan P N.Differential evolution algorithm with strategy adaptation for global numerical optimization[J].IEEE Transactions on Evolutionary Computation, 2009,13 (2).
  • 4Subudhi B, Jena D.A differential evolution based on neural network approach to nonlinear system identification[J].Applied Soft Computing,2010,1 (6).
  • 5Rahnamayan S.Opposition-based differential evolution[D].Waterloo : University of Waterloo, 2007.

同被引文献26

  • 1郭生练,陈炯宏,刘攀,李雨.水库群联合优化调度研究进展与展望[J].水科学进展,2010,21(4):496-503. 被引量:150
  • 2范瑜,金荣洪,耿军平,刘波.基于差分进化算法和遗传算法的混合优化算法及其在阵列天线方向图综合中的应用[J].电子学报,2004,32(12):1997-2000. 被引量:44
  • 3Price K. Differential Evolution:a Fast and Simple Numerical Optimizer[ M ]. New York:Biennial Conf of the North American Fuzzy Information Processing Society, 1996 : 524-527.
  • 4Storn R, Price K. Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optim-ization over Continuous Spaces [ J ]. International Computer Science Institute, 1995,8:22-25.
  • 5Ursem R K, Vadstrup P. Parameter identification of Induction Motors Using Differential Evolution [ C ]//Canberra: Proc of the 5th Congress on Evolutionary Computation,2003:790-796.
  • 6Storn R, Price K.Differential evolution-a simple and efficient adap- tive scheme for global optimization over continuous space[R]. Berkley:International Computer Science Institute, 1995:22-25.
  • 7Eusuff M M,Lansey K E.Optimization of water distribution net- work design using the shuffled frog leaping algorithm[J].Water Resources Planning and Management, 2003,129(3).
  • 8Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies [ C]. In Proceedings of 1 st European Conferenc on Artificial Life, Pans, France, Elsevier Publishing, 1991 : 134 - 142.
  • 9Dorigo M, Caro G D, GAMBARDELLA L M. Ant algorithms for discrete optimization [ J ]. Applied Intelligence ,2003,18:105 -111.
  • 10Kennedy J, Eberhart R C. Particle swarm optimization [ C ]. Proc of the IEEE International Conference on Neural Networks. Piscataway, NJ. IEEE Service Center, 1995 : 1942 - 1948.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部