期刊文献+

结合SA算法的快速微粒群优化算法 被引量:3

Rapid partical swarm optimization combined simulated annealing algorithm
下载PDF
导出
摘要 理论上已经证明PSO算法用所有微粒的当前位置与全体最好位置相同时算法停止作为收敛准则是有缺陷的,不能保证全局收敛。而已经证明模拟退火算法依概率1收敛于全局最优解集,因此可将模拟退火算法作为PSO算法的收敛判据。将模拟退伙算法和微利群优化算法结合起来,保证PSO算法的全局收敛性,提高了收敛的速度和效率。实验结果证明了其有效性。 Theory has proved that the convergence criterion of the algorithms ceasing is flawed when using the current location as the best location of all particles,and the global convergence is not guaranteed.Simulated annealing algorithm has been proven to be a global optimal solution set under the probability of 1,so the simulated annealing algorithm can be used as the convergence criterion of PSO algorithm.The paper combines the simulated annealing algorithm with the particle swarm optimization algorithm to ensure the global convergence of the PSO algorithm and improve the convergence speed and efficiency.Experimental results show its effectiveness.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第8期27-29,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.60873058 No.60743010) 山东省自然科学基金重点项目(No.Z2007G03) 山东省教育部科学与技术工程 山东省"泰山学者"工程~~
关键词 微粒群优化算法 全局收敛 协同搜索 模拟退火算法 partical swarm optimization global convergence cooperative search simulated annealing algorithm
  • 相关文献

参考文献10

二级参考文献72

共引文献132

同被引文献29

  • 1苗卉,杨韬.旅行商问题(TSP)算法的比较[J].技术与市场,2007,14(2):81-82. 被引量:4
  • 2Poli R, Kennedy J, Blackwell T. Particle swarm optimization: an overview[J], Swarm Intelligence, 2007, (1): 33-57.
  • 3Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization [J]. Computers & Operations Research, 2006, 33: 859-871.
  • 4Dong Hw a Kim, Jae Hoon Cho. Intelligent control of AVR system using GA-BF [C]//Lecture Notes in Computer Science Proc of Springer, 2005: 854-859.
  • 5Xie Liping,Zeng Jianchao. The performance analysis of artificial physics optimization algorithm driven by different virtual forces[J]. IClC Express Letters, 2010, 1(4): 239-244.
  • 6Niu Ben, Zhu Yunlong, He Xiaoxian, et al. An improved particle swarm optimization based on bacterial chemotaxis[C] //Proceedings of the 6th World Congress on Intelligent Control and Automation: IEEE, 2006: 3193-3197.
  • 7Shelokar P S, Siarry P, Jayaraman V K, et al. Particle swarm and ant colony algorithms hybridized for improved continuous optimization [J]. Applied Mathematics and Computation, 2007, 188: 129-142.
  • 8冯剑,岳琪.模拟退火算法求解TSP问题[J].森林工程,2008,24(1):94-96. 被引量:18
  • 9刘清.基于模型参考和微粒群算法优化的传感器动态补偿方法[J].计量学报,2007,28(2):154-157. 被引量:3
  • 10李军军,肖健梅,王锡淮.一种精英退火微粒群算法[J].控制与决策,2008,23(7):756-761. 被引量:6

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部