期刊文献+

SVM的几何方法—SK类思路的研究 被引量:1

Study on geometric approach of SVM algorithm——SK algorithm analysis and study
下载PDF
导出
摘要 支持向量机(Support Vector Machine,SVM)的几何方法是一种基于SVM计算过程中几何意义出发的求解方法。利用其几何特点,比较直观地对其基本算法的构建过程进行了分析。两凸包相对位置可以简要地归纳成5类,且在该类算法迭代过程最优点多在顶点和边界上,该类算法在第一次迭代就可能达到边界(最优点);该类算法的手动单步模拟计结果揭示:很多情况下,该类算法迭代过程的投影并不成功,虽不影响解法的最终结果,但会影响迭代效率;基于几何的分析,给出软SK软算法的两种改进思路(Backward-SK和Forward-SK思路),并进行了仿真比较计算。实验表明,该方法计算效果与原思路相似,但是计算过程理解更加直观。 The geometric approach of the Support Vector Machine(SVM) is a kind of geometric way to find the solution to the problem of the SVM algorithm.Based on its geometric characters,the SK(Schlesinger-Kozinec) algorithm is studied intuitively. It briefly sums up the two convex hulls,based on their relative positions,into five categories,and makes sure their optimizing position got in each computing is mostly at the hull vertices or boundary,it can get to the boundary(the optimization place of the computing) at the first computation.The manual single-step simulation results show that the projection is not always successful for such kind of algorithms in many cases,though it can’t affect the computing result,but can weaken the algorithm efficiency.Based on the analysis,it demonstrates two improving ways for the soft SK algorithm(Backward-SK and Forward-SK methods),and makes some simulation for comparing.The simulation results show that the improved method computing results are almost same as the SK and soft SK ones,but the computing process of improved one is more intuitive.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第8期149-153,160,共6页 Computer Engineering and Applications
基金 深圳市深港创新圈项目
关键词 SK算法 凸包 支持向量机 几何方法 数据挖掘 SK algorithm convex hull support vector machine geometric approach data mining
  • 相关文献

参考文献16

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2崔伟东,周志华,李星.支持向量机研究[J].计算机工程与应用,2001,37(1):58-61. 被引量:88
  • 3Vapnik V.Statistical learning theory[M].New York:Wiley,1998.
  • 4Platt J C.Fast training of support vector machines using sequential minimal optimization[M]//Advances in Kernel Methods-Support Vector Learning.Cambridge, MA: MIT Press, 1999: 185-208.
  • 5Lee Y J, Mangasarian O L.RSVM:Reduced support vector ma- chines[C]//Proeeeding of the First SIAM International Confer- ence on Data Mining,2001.
  • 6陶卿.求解SVM的几何方法研究[M]//机器学习及其应用2007.北京:清华大学出版社,2007:49-84.
  • 7张楠,范玉妹.关于支持向量机几何算法的研究[J].计算机技术与发展,2007,17(1):142-144. 被引量:6
  • 8Franc V, Hlavfic V.An iterative algorithm learning the maximal margin classifier[J].Pattern Recognition, 2003,36:1985-1996.
  • 9Keerthi S S, Shevade S K, Bhattacharyya C.A fast iterative nearest point algorithm for support vector machine classifier design[J]. IEEE Trans Neural Networks, 2000,11 ( 1 ) : 124-136.
  • 10Li Yi, Long P M.The relaxed online maximum margin algo- rithm[C]//Solla S A, Leen T K, Muller K R.Advances in Neu-ml Information Processing Systems 12.Cambridge, MA: MIT Press, 1999:169-184.

二级参考文献43

  • 1[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 2[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297
  • 3[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136
  • 4[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998
  • 5[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998
  • 6[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953
  • 7[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31
  • 8[8]Osuna E,Freund R,Girosi F.Support Vector Machines:Training and Applications.AI Memo 1602,MIT AI Lab,1997
  • 9[9]Osuna E,Freund R,Girosi F.An Improved Training Algorithm for Support Vector Machines.In:Principe J,Gile L,Morgan N,Wilson E eds.,Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing,New York:IEEE,1997:276~285
  • 10[10] Joachims T.Making Large-Scale SVM Learning Practical.In:Schol-kopf B,Burges C J C,Smola A eds.,Advances in Kernel Methods Support Vector Learning,Cambridge,MA:MIT Press,1998:169~184

共引文献244

同被引文献22

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部