期刊文献+

含伪结的RNA分子二级结构预测

RNA secondary structure prediction with pseudoknots
下载PDF
导出
摘要 预测含伪结的RNA分子二级结构是生物信息学的一个研究难点。利用多分类支持向量机结合贝叶斯神经网络针对含伪结的RNA分子二级结构进行预测。利用多分类支持向量机进行预测,输出端得到相应碱基的平面伪结结构的E-NSSEL(Ex-tend New Secondary Structure Element Label)类别标签。使用碱基已预测的结果通过贝叶斯神经网络进行修正,并恢复RNA分子二级结构。使用该方法能有效地改善含伪结的RNA分子二级结构的预测效果。 RNA secondary structure prediction with pseudoknots is one of the most difficult research areas in bioinformatics.This paper introduces a new representation of the RNA secondary structure with plane pseudoknots by multi-class Support Vector Machine(multi-class SVM) and Bayesian Neural Networks(BNN).A multi-class SVM model is presented to predict RNA secondary structure based on E-NSSEL labels that can express plane pseudoknots effectively.BNN is used to correct the results by considering the neighbor residues predicted labels.The RNA secondary structure is resumed according to the predicted results.Experiment proves that this method can improve the RNA secondary structure prediction results with plane pseudoknots.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第8期219-222,共4页 Computer Engineering and Applications
基金 基于SAAS的信息化共性技术服务平台国家火炬计划(No.2008GH540088)~~
关键词 多分类支持向量机 贝叶斯神经网络 RNA二级结构 E-NSSEL标签 平面伪结 multi-class support vector machine Bayesian Neural Networks(BNN) RNA secondary structure Extend New Secondary Structure Element Label(E-NSSEL) labels plane pseudoknots
  • 相关文献

参考文献9

  • 1Furtig B,Richter C, Wohnert J,et aI.NMR spectroscopy of RNA[J]. Chembiochem, 2003,4(10) : 936-962.
  • 2Jiang Tao, Xu Ying, Zhang M Q.Current topics in computation- al molecular biology[M].Beijing:Tsinghua University Press,2002.
  • 3Zuker M.Optimal computer folding of large RNA sequence us- ing thermodynamics and auxiliary information[J].Nueleic Acids Research, 1981,9( 1 ) : 133-148.
  • 4Sakakibara Y,Brown M,Hughey R, et al.Stochastic context-free grammars for tRNA modeling[J].Nucleic Acids Research, 1994, 22(23) :5112-5120.
  • 5何静媛,何中市,邹东升.RNA二级结构预测的支持向量机模型研究[J].计算机科学,2008,35(4):181-183. 被引量:2
  • 6Hsu C W, Lin C J.A comparison of methods for multi-clas: support vector maehines[J].IEEE Trans on Neural Networks 2002,13(2) :415-425.
  • 7Neal R.Bayesian learning for neural networks[M].Berlin:Springer- Verlag, 1996.
  • 8Gardner P P, Giegerich R.A comprehensive comparison of com- parative RNA structure prediction approaches[J].BMC Bioinfor- maties, 2004,5 ( 1 ) : 1-32.
  • 9Baldi P, Brunak S, Chauvin Y, et al.Assessing the accuracy of prediction algorithms for classification:An overview[J].Bioinfor- matics, 2000,16(5) :412-424.

二级参考文献8

  • 1张秀苇,邓志东,宋丹丹.RNA二级结构预测的神经网络方法[J].清华大学学报(自然科学版),2006,46(10):1793-1796. 被引量:8
  • 2VapnikVN著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 3Ho1leyLH KarplusM.基于神经网络的蛋白质二级结构预测[J].生物物理学,1989,86:152-156.
  • 4Zuker M. Optimal computer folding of large RNASequence using thermodynamics and auxiliary information, Nucl. Acids Res. , 1981, 9:133-148
  • 5SakakibaraY, Brown M, Hnghey R,et al. Stochastic context-free grammars for tRNA modeling[J]. Nucleic Acids Research, 1994, 22(23) :5112-5120
  • 6Shapiro B A,Navetta J. A massively parallel genetic algorithm for RNA structure prediction. J. SuperComput 1994,8 : 195-207
  • 7Gorodkin J,Stricklin S L,Stormo G D. Discovering common stemloop motifs in unaligned RNA sequences. Nucleic Acids Res., 2001,29:2135-2144
  • 8Eddy S R, Durbin R. RNA sequence analysis using covarianee models. Nucleic Acids Research, 1994,22(1):2079-2088

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部