摘要
引进了一秩紧对称空间上的Fejér-Korovkin 算子,通过建立K-泛函和光滑模的强渐近等价估计,研究了Fejér-Korovkin 算子的逼近性质,并由此给出了一秩紧对称空间上最佳逼近的基本定理.
The Fejér Korovkin operators on compact symmetric spaces of rank one are introduced. By making use of the equivalence between the K functionals and the moduli of smoothness, some approximation properties of Fejér Korovkin operators are studied. The fundamental theorems in the theory of best approximation on compact Riemannian symmetric spaces are also established.
出处
《数学杂志》
CSCD
1999年第3期327-332,共6页
Journal of Mathematics