摘要
本文讨论所有循环平坦系满足条件(P)的幺半群的“元素——理想”特征问题,该问题至今仍未获解决. 在S是左PSF幺半群的条件下,本文证明了所有循环平坦右S-系满足条件(P)当且仅当S的任意元x 或者是右可消元,或者是右零元,也当且仅当对S的任意真右理想I,或存在a∈I- Ia,或I中的所有元素均为右零元,该结果改进并推广了[4]、[7]、[8]。
This paper devoted to consider monoids over which all cyclic flat right acts satisfy condition (P).If S is a left PSF monoid,then it is proved that all cyclic flat right S acts satisfy condition (P) if and only if every element of S is either right zero or right cancellative if and only if for every proper right ideal I of S,either there exists a∈I-Ia or every elementof I is right zero.As corollaries,some results of [4],[7],[8]and [15] are generalized. This paper devoted to consider monoids over which all cyclic flat right acts satisfy condition (P).If S is a left PSF monoid,then it is proved that all cyclic flat right S acts satisfy condition (P) if and only if every element of S is either right zero or right cancellative if and only if for every proper right ideal I of S,either there exists a∈I-Ia or every elementof I is right zero.As corollaries,some results of [4],[7],[8]and [15] are generalized.
出处
《数学杂志》
CSCD
1999年第3期339-344,共6页
Journal of Mathematics
基金
国家自然科学基金
甘肃省自然科学基金