期刊文献+

基于聚类模式的推荐算法研究 被引量:1

Recommended Based on Clustering Algorithm
下载PDF
导出
摘要 经典的协作式过滤算法基于记忆的非参数局部模型,该模型应用最近邻算法(K-nearest neighbors,KNN)技术,把目标用户近邻对于目标推荐项的喜好,作为向该用户进行有效推荐的标准。该方法在预测时需要较长的运算时间,并且在特定参数的限制下,不能保证对所有的用户进行有效预测。为了解决以上问题,介绍1种基于聚类模式的新的推荐方法。该算法首先假设目标用户和推荐项均能以一定的概率划归于不同的用户模式和推荐项模式中;通过计算各个用户模式对于各个推荐项模式的评分,以及用户属于不同用户模式的概率,推荐项属于不同项目模式的概率;从而产生目标用户对于具体推荐项的预测评分。通过与经典的协作式过滤推荐算法结果的对比,该方案可以在较短的时间预测所有用户对于所有推荐项的评分,并且其推荐效果与其他方法对比有了很好的改进。 Classic collaborative filtering algorithm is memory-based non-parametric local model,the model is applied K-nearest neighbors(KNN) technology to target user neighbor recommended items for the target preferences,as a recommendation to the user for effective standards.The method in predicting a longer computing time required,and restrictions on certain parameters,we can not guarantee that all users effectively predict.In order to solve the above problem this paper presents a new model based on clustering recommended method.The algorithm first assume that the target user and recommend items to a certain degree of probability can be classified as a different user mode and recommend key mode;Individual users by calculating the recommended mode of entry mode for each rating,as well as the user the probability of belonging to different user-mode,recommended mode of entry of the probability of belonging to different projects;Resulting in the target user for specific items recommended prediction score.With the classic collaborative filtering recommendation algorithm comparison of the results,changing the program can be predicted in a short time to all users for all recommended items score,and its effects with other methods recommend a good contrast with the improvements.
出处 《系统仿真技术》 2011年第1期43-47,共5页 System Simulation Technology
关键词 协同过滤 信息推荐 聚类 分类模型 K-均值 collaborative filtering information recommendation clustering classification model K-means
  • 相关文献

参考文献10

  • 1Ricardo Baeza-Yates, Berthier Ribeiro-Neto. Modern information retrieval [ M ]. [ s. l. ] : Addison Wesley Longman Press, 1999.
  • 2LI Qingcheng, DONG Zhenhua, Research of information recommendation system based on readings behavior[ C ]// Machine Learning and Cybernetics, 2008 InternationalConference on Vol. 3. [ s. l. ] : IEEE Press, 2008:1626 - 1631.
  • 3LI Qing, Kim Byeong Man. An approach for combining content-based and collaborative filters [ C ]//Proceedings of the Sixth International Workshop on Information Retrieval with Asian Languages. Sapporo: Kenji Araki Hokkaido University ,2003 : 1 - 7.
  • 4Greg Linden, Brent Smith. Amazon recommendations item-to-item collaborative filter [ C ] //J IEEE Internet Computing. [ s. 1. ] : IEEE ,2003:76 - 80.
  • 5Breese J S,Heckerman D,Empirical Kadie C. Analysis of predictive algorithms for collaborative filtering [ R ]. [ s. l. ] : Technical Report MSR-TR - 98 - 12, Microsoft Research, 1998.
  • 6Hoffman T. Collaborative filtering via gaussian probabilistic latent semantic analysis [ R ]. [ s. L. ] : SIGIR,2003.
  • 7Hoffman T, Puzicha J. collaborative filtering [ C ] // Latent class models for Proceedings of International Joint Conference on Artificial Intelligence. San Francisco: International Joint Conferences on Artificial Intelligence, Inc, 1999:688 - 693.
  • 8Almosallam I A,Yi Shang. A new adaptive framework for collaborative filtering prediction [ C ] //J Evolutionary Computation. [ s. l. ] : MIT Press,2008:2725 - 2733.
  • 9Harpale Abhay S, Yang Yiming. Personalized active learning for collaborative filtering [ R 1. [ s. l.]: SIGIR,2008.
  • 10HAN Jiawei, Kamber Micheline. Data mining concepts and techniques[ M]. [ s. l. ] :China Machine Press,2006.

同被引文献14

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部