摘要
对微分包含的周期生存轨道进行了研究讨论·首先给出微分包含生存问题的一约化性质;然后,利用投影微分包含的方法给出有限维空间中微分包含的周期生存轨道的一个存在性结果;在此基础上。
In this paper the periodic viable trajectories of differential inclusions are discussed. Firstly, a simplified proprety of differential inclusions is given. Then, an existence theorem of periodic viable trajectories of differential inclusions in a finite dimensional space is proved. With the above results and Galerkin's approximation, an existence theorem of periodic viable trajectories of partial differential in a Hilbert space is proved.
出处
《应用数学和力学》
EI
CSCD
北大核心
1999年第6期633-639,共7页
Applied Mathematics and Mechanics
关键词
微分包含
相依锥
生存轨道
存在性
周期生存轨道
differential inclusion
contigent cone
viable trajectory
Galerkin approximation