期刊文献+

Water exchange and circulation structure near the Luzon Strait in early summer 被引量:3

Water exchange and circulation structure near the Luzon Strait in early summer
下载PDF
导出
摘要 Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009, we studied the circulation structure in the Luzon Strait area, examined the routes of water exchange between the South China Sea (SCS) and the Philippine Sea, and estimated the volume transport through Luzon Strait. We found that the Kuroshio axis follows a e-shaped path slightly east of 121°E in the upper layer. With an increase in depth, the Kuroshio axis became gradually farther from the island of Luzon. To study the water exchange between the Philippine Sea and the SCS, identification of inflows and outflows is necessary. We first identified which flows contributed to the water exchange through Luzon Strait, which differs from the approach taken in previous studies. We determined that the obvious water exchange is in the section of 121°E. The westward inflow from the Philippine Sea into the SCS is 6.39 Sv in volume, and mainly in the 100-500 m layer at 19.5°-20°N (accounting for 4.40 Sv), while the outflow from the SCS into the Philippine Sea is concentrated in the upper 100 m at 19°-20°N and upper 400 m at 21°-21.5°N, and below 240 m at 19°-19.5°N, accounting for 1.07, 3.02 and 3.43 Sv in volume transport, respectively. Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009,we studied the circulation structure in the Luzon Strait area,examined the routes of water exchange between the South China Sea(SCS) and the Philippine Sea,and estimated the volume transport through Luzon Strait.We found that the Kuroshio axis follows a e-shaped path slightly east of 121uE in the upper layer.With an increase in depth,the Kuroshio axis became gradually farther from the island of Luzon.To study the water exchange between the Philippine Sea and the SCS,identification of inflows and outflows is necessary.We first identified which flows contributed to the water exchange through Luzon Strait,which differs from the approach taken in previous studies.We determined that the obvious water exchange is in the section of 121°E.The westward inflow from the Philippine Sea into the SCS is 6.39 Sv in volume,and mainly in the 100±500 m layer at 19.5°±20°N(accounting for 4.40 Sv),while the outflow from the SCS into the Philippine Sea is concentrated in the upper 100 m at 19°±20°N and upper 400 m at 21°±21.5°N,and below 240 m at 19°±19.5°N,accounting for 1.07,3.02 and 3.43 Sv in volume transport,respectively.
出处 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2011年第2期470-481,共12页 中国海洋湖沼学报(英文版)
基金 Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX1-YW-12) the National Natural Science Foundation of China (Nos. 41030855,41006013)
关键词 water exchange the Luzon Strait circulation structure KUROSHIO 吕宋海峡 环流结构 水交换 菲律宾海 初夏 南海海域 水文数据 南中国海
  • 相关文献

参考文献7

二级参考文献39

共引文献179

同被引文献34

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部