摘要
本文研究异方差回归模型Y(n)i=g(x(n)i)+ε(n)i,i=1,…,n,其中g是未知实函数,x(n)i是非随机设计点列,ε(n)i是随机误差.文中定义了一类g(x)的近邻型估计gn(x)=ni=1Wni(x)Y(n)i,得到了r阶平均相合和渐近正态性.特别,在∞n=1ni=1E|ε(n)i|s/(ni)s/r<∞,max1≤i≤nE|ε(n)i|s=O(ns/r)(某s>r>2)下,获得了gn(x)的强相合和一致强相合性.
In this paper, the heteroscedasticity regression model Y (n)
i=g(x (n) i)+ε (n) i,i=1,…,n , is studied, where g is an unknown function, x (n) i
are known and nonrandom,and ε (n) i are independent random errors. Under suitable
conditions, a nearest neighbor estimate g n(x)=ni=1W ni (x)Y (n) i of g(x) is
defined.It is shown that the g n is r th mean consistent and asymptotically
normal.Especially,the strong consistency and uniform strong consistency for g n(x) are
also obtained,provided that ∞n=1ni=1E|ε (n) i| s/(ni) s/r <∞ and max 1≤ i
≤ nE|ε (n) i| s =O(n s/r ) for some s>r >2.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
1999年第2期169-177,共9页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金
关键词
异方差回归模型
近邻型估计
渐近正态性
相合性
Heteroscedasticity
Regression Model, Nearest Neighbor Estimate, Asymptotical Normal, Strong Consistency,
Uniform Strong Consistency.