期刊文献+

幂等矩阵与秩幂等矩阵的充要条件 被引量:5

The Necessary and Sufficient Conditions for Idempotent Matrix and Rank-idempotent Matrix
下载PDF
导出
摘要 满足A2=A的n阶方阵A称为幂等矩阵,它是矩阵环Mn(F)的一个幂等元;满足r(A)=r(A2)的n阶方阵A称为秩幂等矩阵。它们与空间的分解、不变子空间的研究有密切关系。利用线性空间的理论方法研究幂等矩阵与秩幂等矩阵的性质,分别得到与它们等价的一些充要条件。 A matrix of satisfying A= A2 is called idempotent matrix.It is an idempotent element of matrix ring Mn(F).A matrix of satisfying r(A)= r(A2) is called rank-idempotent matrix.They are closely related to decomposition of space and invariant subspace.Some properties of idempotent matrix and rank-idempotent matrix are discussed by using methods of linear space.The necessary and sufficient conditions for idempotent matrix and rank-idempotent matrix are given.
作者 刘小川 何美
出处 《山西大同大学学报(自然科学版)》 2011年第1期9-11,共3页 Journal of Shanxi Datong University(Natural Science Edition)
关键词 幂等矩阵 秩幂等矩阵 矩阵的核 矩阵的列空间 矩阵的秩 idempotent matrix rank-idempotent matrix kernel of matrix column space of matrix rank of matrix
  • 相关文献

参考文献6

二级参考文献41

共引文献245

同被引文献26

  • 1左可正.每个矩阵都能表成两个秩幂等矩阵之和[J].湖北师范学院学报(自然科学版),2008,28(4):19-21. 被引量:1
  • 2曾梅兰.线性变换及矩阵可交换的性质与应用[J].孝感学院学报,2006,26(3):44-46. 被引量:6
  • 3张禾瑞,郝炳新.高等代数[M].5版.北京:高等教育出版社,2007.
  • 4姚幕生.高等代数[M].上海:复旦大学出版杜,2002.
  • 5Jerzy K B,Oskar M B, Halim O. A note on linear combinations of commuting tripotent matrices [ J ]. Linear Alge- bra and its Applications,2004,388:45 -51.
  • 6Jerzy K B, Oskar M B, Tomasz S. Properties of Schur complements in partitioned idempotent matrices [ J ]. Linear Algebra and its Applications 2004,379:303 -318.
  • 7Ozdemir H, Sarduvan M, Yasar O A, et al. On idempotency and tripotency of linear combinations of two commuting tripotent matrices [ J ]. Applied Mathematics and Computation,2009,207 : 197 - 201.
  • 8Meyer C D. Matrix Analysis and Applied Linear Algebra [ M ]. Philadelphia: SIAM ,2000.
  • 9Rao C R, Mitra S K. Generalized Inverse of Matrices and Its Applications [ M ]. New York : Wiley, 1971.
  • 10Baksalary J K, Baksalary O M, George P H. Styan. Idempotency of linear combinations of an idempotent matrix and a tripotent matrix [ J ]. Linear Algebra and its Applications ,2002,354:21 - 34.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部