摘要
满足A2=A的n阶方阵A称为幂等矩阵,它是矩阵环Mn(F)的一个幂等元;满足r(A)=r(A2)的n阶方阵A称为秩幂等矩阵。它们与空间的分解、不变子空间的研究有密切关系。利用线性空间的理论方法研究幂等矩阵与秩幂等矩阵的性质,分别得到与它们等价的一些充要条件。
A matrix of satisfying A= A2 is called idempotent matrix.It is an idempotent element of matrix ring Mn(F).A matrix of satisfying r(A)= r(A2) is called rank-idempotent matrix.They are closely related to decomposition of space and invariant subspace.Some properties of idempotent matrix and rank-idempotent matrix are discussed by using methods of linear space.The necessary and sufficient conditions for idempotent matrix and rank-idempotent matrix are given.
出处
《山西大同大学学报(自然科学版)》
2011年第1期9-11,共3页
Journal of Shanxi Datong University(Natural Science Edition)
关键词
幂等矩阵
秩幂等矩阵
矩阵的核
矩阵的列空间
矩阵的秩
idempotent matrix
rank-idempotent matrix
kernel of matrix
column space of matrix
rank of matrix