期刊文献+

并行MRI图像重建算法比较及软件实现 被引量:8

Comparison and Implementation of Commonly-Used Image Reconstruction Algorithms in Parallel MRI
下载PDF
导出
摘要 首先介绍了不加速的并行MRI图像重建方法,然后对加速的并行MRI的4种图像重建算法进行了比较,得出结论:加速因子相同时,重建质量上,GRAPPA和SENSE的重建质量最好,SMASH的重建质量次之,PILS算法对线圈位置要求极高,重建质量最差;重建速度上,SMASH的重建速度最快,其次是SENSE和PILS,GRAPPA的重建速度最慢.当加速因子变大时,所有算法重建质量都变差.最后介绍了算法实现软件,该软件可以读入原始数据,显示数据采集轨迹,计算线圈灵敏度,选择图像重建方法,分析和比较重建图像质量.该软件为我国在MRI成像领域提供了一个学习和进一步研究图像重建算法的有力工具. This paper reviews the commonly-used image reconstruction algorithms in parallel magnetic resonance imaging.First,the reconstruction algorithms used in parallel MRI without acceleration was discussed.Then,the commonly-used reconstruction algorithms in parallel MRI with acceleration,SENSE,PILS,SMASH and GRAPPA,were compared.It was shown that,with the same accelerating factor,the quality of GRAPPA and SENSE reconstructions are the best among the four,while that of PILS reconstruction is the worst.In terms of reconstruction speed,SMASH is the fastest,and GRAPPA is the slowest.The performance of all four reconstruction algorithms degraded with increasing accelerating factor,suggesting that increase of imaging speed is at the expense of the cost of SNR.We also implemented the reconstruction algorithms for parallel imaging on an Matlab GUI platform.The resulting software has the functions of reading raw data,showing sampling trajectory,calculating coil sensitivity,choosing image reconstruction method,analyzing and comparing image quality etc.We believe the software will be helpful for study and research on parallel MRI reconstruction algorithms.
出处 《波谱学杂志》 CAS CSCD 北大核心 2011年第1期99-108,共10页 Chinese Journal of Magnetic Resonance
基金 国家自然科学基金资助项目(30970782)
关键词 MRI图像重建 k-空间原始数据 并行MRI MRI image reconstruction k-space data parallel imaging
  • 相关文献

参考文献7

  • 1黄敏,官金安,黄立,卢松涛.螺旋MRI的网格化数据重建算法比较[J].波谱学杂志,2006,23(3):303-311. 被引量:3
  • 2Pruessmann K P,Weiger M,Scheidegger M B,et al.SENSE:Sensitivity encoding for fast MRI[J].Magn Re-son Med,1999,42(5):952-962.
  • 3Griswold M A,Jakob P M,Nittka M,et al.Partially parallel imaging with localized sensitivities (PILS)[J].2000,44(4):602-609.
  • 4Sodickson I) K,Manning W J.Simultaneous acquisition of spatial harmonics (SMASH):fast imaging with ra-diofrequency coil arrays[J].Magn Reson Med,1997,38(4):591-603.
  • 5Jakob P M,Griswold M A,Edelman R R,et al.AUTO-SMASH:a selfcalibrating technique for SMASH imaging:SiMultaneous Acquisition of Spatial Harmonics[J].MAGMA,1998,7(1):42-54.
  • 6Heidemann R M,Griswold M A,Haase A,et al.VD-AUTO-SMASH imaging[J].Magn Reson Med,2001,45(6):1 066-1 074.
  • 7Griswold M.Generalized autocalibrating partially parallel acquisitions (GRAPPA)[J].Magn Reson Med,2002,47(6):1 202-1 210.

二级参考文献9

  • 1Thrall J.How molecular medicine will impact radiology[J].Diagnostic Imaging,1997,19(12):23-27.
  • 2Meyer C,Hu BS,Nishimura DG,et al.Fast Spiral coronary artery imaging[J].Magn Reson Med,1992,28(2):202-213.
  • 3Sullivan O.A fast sinc function gridding algorithm for Fourier inversion in computer tomography[J].IEEE T Med Imaging,1985,4(2):200-207.
  • 4Jackson J I,Meyer C H,Nishimura D G.Selection of a convolution function for Fourier inversion using gridding[J].IEEE T Med Imaging,1991,10(3):473-478.
  • 5Claudia O,Michael M.Spiral reconstruction by Regridding to a Large Rectilinear Matrix:A Practical Solution for Routine Systems[J].Journal of Magnetic Resonance Imaging,1999,10(1):84-92.
  • 6Schomberg H.Notes on direct and gridding-based Fourier inversion methods[C].Washington D C:IEEE International Symposium on Biomedical Imaging,2002.645-648.
  • 7Kai T,Jens F.Spiral Imaging:A Critical Appraisal[J].Journal of Magnetic Resonance Imaging,2005,21:657-668.
  • 8Maeda A,Sano K,Yokoyama T.Reconstruction by weighted correlation for MRI with time-varying gradients[J].IEEE T Med Imaging,1988,7(1):26-31.
  • 9卢广,刘买利,叶朝辉.Spiral MRI和图像处理[J].波谱学杂志,2004,21(2):175-183. 被引量:2

共引文献2

同被引文献59

  • 1汪红志,聂生东,张学龙,杨培强,夏春云,武杰.筹建核磁共振成像技术实验室的探索与思考[J].实验技术与管理,2007,24(5):133-135. 被引量:5
  • 2Bley T A, Wieben O, Francois C J, et al. Fat and water magnetic resonance imaging[J]. J Magn Reson Ima ging, 2010, 31(1): 4--18.
  • 3Delfaut E M, Beltran J, Johnson G, et al. Fat suppression in MR imaging: techniques and pitfalls[J]. Radio- graphics, 1999, 19(2): 373--382.
  • 4Bottomley P A, Foster T H, Leue W M. In vivo nuclear magnetic resonance chemical shift imaging by selective irradiation[J]. ProcNatlAcadSciUSA, 1984, 81(21): 6 856--6 860.
  • 5Glover G H, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction[J]. MagnResonMed, 1991, 18(2): 371 383.
  • 6Reeder S B, Pineda A R, Wen Z, etal. Iterative decomposition of water and fat with echo asymmetry and least- squares estimation (IDEAL) : application with fast spin-echo imaging[J]. Magn Reson Med, 2005, 54(3) : 636 --644.
  • 7Skinner T E, Glover G H. An extended two-point Dixon algorithm for calculating separate water, fat, and B0 images[J]. MagnResonMed, 1997, 37(4): 628--630.
  • 85chmidt M A, Fraser K M. "l'wo-point Dixon tat-water separation: improving reliability and accuracy in phase correction algorithms[J]. J Magn Reson Imaging, 2008, 27(5): 1 122--1 129.
  • 9Rydberg J N, Riederer S J, Rydberg C H, et al. Contrast optimization of fluid-attenuated inversion recovery (FLAIR) imaging[J]. MagnResonMed, 1995, 34(6): 868--877.
  • 10Kouwe A J W, Benner T, Fischl B, el al. On-line automatic slice positioning for brain MR imaging[J]. Neuroimage, 2005, 27(1): 222-230.

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部