摘要
为解决目标数未知或随时间变化的多目标跟踪问题,通常将多目标状态和观测数据表示成随机集形式,并通过递推计算目标状态联合分布的概率假设密度(PHD)来完成.然而,对于被动测角的非线性跟踪问题,PHD无法获得闭合解,为此提出一种新的高斯混合粒子PHD算法.该算法利用高斯混合近似PHD,以避免用聚类确定目标状态,并采用拟蒙特卡罗(QMC)积分方法计算目标状态的预测和更新分布.仿真结果验证了所提出算法的有效性.
When the number of targets is unknown or varies with time, multi-target state and measurements are represented as random sets and the multi-target tracking problem is addressed by calculating the probability hypothesis density(PHD) of the joint distribution, recursively. However, PHD can not provide a closed-form solution to the nonlinear problem occurred in the passive bearings-only multi-target tracking system. A new Gaussian mixture particle PHD(GMPPHD) filter is presented in the paper. The PHD is approximated by a mixture of Gaussians, which avoids clustering to determine target states. And Quasi-Monte Carlo integration method is used for approximating the prediction and update distributions of target states. Simulation results show the effectiveness of the proposed algorithm.
出处
《控制与决策》
EI
CSCD
北大核心
2011年第3期413-417,共5页
Control and Decision
基金
国家自然科学基金项目(60871074).
关键词
多目标跟踪
随机集
概率假设密度
被动测角
拟蒙特卡罗积分
multi-target tracking
random sets: probability hypothesis density: passive bearings-only
Quasi-Monte Carlo integration