摘要
借鉴量子计算的相关概念和原理,提出一种改进实数编码量子进化算法(IRCQEA).算法的核心是依据染色体的具体形式和目标函数的梯度信息设计互补变异进化染色体,以实现局部搜索和全局搜索的平衡;根据算法的进化过程动态缩小搜索空间,以加快收敛速度.对标准数值优化问题的求解结果表明,该算法具有寻优能力强、搜索精度高和稳定性好等优点.以非线性系统参数估计问题为例进行的仿真实验表明,所提出的算法能够有效提高估计参数的精度.
Referring to the relational concepts and principles of quantum computing, an improved real-coded quantum evolutionary algorithm is proposed. The core of this algorithm is that, a complementary mutation operator, which is designed based on the specific configuration of real-coded chromosome and the gradient information of objective function, is used to update chromosomes and can treat the balance between exploration and exploitation. And a technique of dynamic reducing the search space is adopted to improve the convergence rate of algorithm, which is implemented on the basis of the evolutionary process of algorithm. Simulation results on benchmark numerical optimization show that the algorithm has the characteristics of more powerful optimizing ability, higher searching precision and better stability. Finally, with the parameter estimation of nonlinear system, simulation experiments are performed and the results show that the algorithm can improve the precision of estimation parameters efficiently.
出处
《控制与决策》
EI
CSCD
北大核心
2011年第3期418-422,共5页
Control and Decision
基金
铁道部重点项目(2008G005-A)
黑龙江省自然科学基金项目(F200914).
关键词
量子计算
量子进化算法
实数编码
函数优化
参数估计
quantum computing
quantum evolutionary algorithm: real-coded
function optimization: parameter estimation