期刊文献+

加权约束满足问题的符号ADD求解算法 被引量:5

Symbolic ADD Algorithms for Weighted Constraint Satisfaction Problem
原文传递
导出
摘要 加权约束满足问题(WCSP)是一类软约束满足问题.给出WCSP的代数决策图(ADD)描述,以及基于ADD的两种符号求解算法.首先,通过对变量和变量域值的二进制编码,给出软约束图的ADD表示.其次,将分支定界搜索算法与桶消元算法及符号ADD技术相结合,在静态变量序下,利用结点一致性预处理技术,对WCSP问题进行符号ADD求解.通过引入有向弧一致性计数技术提高符号ADD算法的搜索下界,对符号ADD求解算法作了改进.最后,对大量随机生成的测试用例进行实验分析.结果表明,文中算法在性能上明显优于带有存在有向弧一致性或结点一致性预处理技术的具有前向检查功能的深度优先分支定界搜索算法. The weighted constraint satisfaction problem (WCSP) is a kind of soft constraint satisfaction problems with many practical applications. An algebraic decision diagram (ADD) based scheme is proposed to solve WCSP efficiently. Firstly, the soft constraint network is represented as ADDs so that the WCSP can be formulated symbolically and manipulated implicitly. Secondly, the symbolic ADD algorithm is presented, where the branch and bound algorithm is integrated with bucket elimination algorithm symbolically. And the static variable orderings and the node consistency during search are used. To improve the lower bound of the symbolic ADD algorithm, the counting technique of directional arc consistency is adopted, and thus the symbolic ADD algorithm is improved. Finally, experiments on random problems are implemented, and the results show that the proposed algorithms outperform the depth-first branch and bound algorithms enhanced with a look-ahead process and a preprocessing step of either existential directional arc consistency or the node consistency.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第1期14-21,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60963010 60903079) 广西自然科学基金(No.0832006Z)资助项目
关键词 加权约束满足问题(WCSP) 分支定界 桶消元 符号算法 代数决策图(ADD) Weighted Constraint Satisfaction Problem (WCSP), Branch and Bound, BucketElimination, Symbolic Algorithm, Algebraic Decision Diagram (ADD)
  • 相关文献

参考文献13

  • 1贺仁杰,谭跃进.加权约束满足问题的改进深度优先搜索算法[J].系统工程学报,2004,19(5):512-516. 被引量:5
  • 2Larrosa J, Schiex T. Solving Weighted CSP by Maintaining Arc-Consistency. Artificial Intelligence, 2004, 159 (1/2):1-26.
  • 3Dechter R. Bucket Elimination: A Unifying Framework for Reason-ing. Artificial Intelligence,1999,113(1/2):41-85.
  • 4Larrosa J, Schiex T. In the Quest of the Best Form of Ixmal Consis-tency for Weighted CSP//Proc of the 18th International Joint Confer-ence on Artificial Intelligence. Acapulco, Mexico, 2003:239-244.
  • 5de Givry S, Zytnicki M, Heras F, et al. Existential Arc Consisten- cy : Getting Closer to Full Arc Consistency in Weighted CSP// Proc of the 19th International Joint Conference on Artificial Intelligence. Edinburgh, Scotland, 2005:84-89.
  • 6Bryant R E. Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams. ACM Computing Surverys, 1992,24(3):293-318.
  • 7Bachar R I, Frohm E A, Gaona C M, et al, Algebraic Decision Di- agrams and Their Applications. Formal Methods in Systems Design, 1997,10(2/3):171-206.
  • 8Hachtel G D, Somenzi F. A Symbolic Algorithm for Maximum Flow in 0-1 Networks. Formal Methods in System Design, 1997,10(2/3):207-219.
  • 9徐周波,古天龙,赵岭忠.网络最大流问题的一种新的符号ADD求解算法[J].通信学报,2005,26(2):1-8. 被引量:15
  • 10Chatalic P, Simon L. Multi-Resolution on Compressed Sets of Clauses//Proc of the 12th International Conference on Tools with Artificial Intelligence. Vancouver, Canada, 2000:2-10.

二级参考文献21

  • 1TAKAO A, YASUHITO A. Recent developments in maximum flow algorithms[J]. Journal of the Operations Research Society of Japan,2000, 43(1): 2-31.
  • 2FORD L R, FULKERSON D R. Maximum flow through a network[J].Canadian Journal of Math, 1956, 8(5): 399-404.
  • 3DINIC E A. Algorithm for solution of a problem of maximum flow in networks with power estimation[J]. Soviet Math Dokl, 1970, 11(8):1277-1280.
  • 4KARZANOV A V. Determining the maximum flow in a network by the method of preflows[J]. Soviet Math Dokl, 1974, 15(3): 434-437.
  • 5GOLDBERG A V, TARJAN R E. A new approach to the maximum flow problem[J]. Journal of the Association for Computing Machinery,1988, 35(4): 921-940.
  • 6GOLDBERG A V, RAO S. Beyond the flow decomposition barrier[J].Journal of the Association for Computing Machinery, 1998, 45(5):783-797.
  • 7TAR JAN R E. A simple version of Karzanov's blocking flow algorithm[J]. Operations Research Letters, 1984, 2(6): 265-268.
  • 8TRAFF J L. A heuristic for blocking flow algorithms[J]. European Journal of Operational Research, 1996, 89(3): 564-569.
  • 9BRYANT R E. Graph-based algorithms for Boolean function manipulation[J]. IEEE Transaction on Computer, 1986, 35(8):677-691.
  • 10HACHTEL G D, SOMENZI F. A symbolic algorithm for maximum flow in 0-1 networks[J]. Formal Methods in System Design,1997,10(2/3): 207-219.

共引文献18

同被引文献42

  • 1徐周波,古天龙,赵岭忠.网络最大流问题的一种新的符号ADD求解算法[J].通信学报,2005,26(2):1-8. 被引量:15
  • 2Marriot K,Stuekey P. Programming with constraints[M]. Cam- bridge: MIT Press, 1998.
  • 3Apt K. Principle of Constraint Programming [M]. Cambridge: Cambridge Press, 2003.
  • 4Prosser P. Hybrid algorithms for the constraint satisfaction problems[J]. Computational Intelligence, 1993,9 (3) : 268-299.
  • 5Ginsberg M L. Dynamic backtracking[J]. Artificial Intelligence, 1993,1,25-46.
  • 6Larrosa J, Schiex "i". Solving Weighted CSP by Maintaining Arc Consistency[J]. Artificial Intelligence, 2004,159(1/2) : 1-26.
  • 7Mackworth A K. Consistency in networks of relations[J]. Arti- ficial Intelligence, 1977,8(1) : 99-118.
  • 8Christian B,Charles R J. Refining the basic constraint propaga- tion algorithm[C]Proceedings of the 17th International Joint Conference on Artificial Intelligence. Seattle WA: Morgan Kauf- mann, 2001 : 309-315.
  • 9Mohr R, Henderson T C. Arc and path consistency revised[J]. Artificial Intelligence, 1986,28(2) 225-233.
  • 10Bryant R E. Symbolic Boolean Manipulation with Ordered Bina- ry Decision Diagrams[J]. ACM Computing Surveys, 1992, 24 (3) :293-318.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部