期刊文献+

半监督谱聚类特征向量选择算法 被引量:29

Semi-Supervised Eigenvector Selection for Spectral Clustering
原文传递
导出
摘要 对于一个K类问题,Ng-Jordan-Weiss(NJW)谱聚类算法通常采用数据规范化亲和度矩阵的前K个最大特征值对应的特征向量作为数据的一种表示.然而,对于某些模式识别问题,这K个特征向量不一定能够体现原始数据的结构.文中提出一种半监督谱聚类特征向量选择算法.该算法利用一定量的监督信息寻找能够体现数据结构的特征向量组合,进而获得优于传统谱聚类算法的聚类性能.UCI标准数据集和MNIST手写体数据集上的仿真实验验证该算法的有效性和鲁棒性. For a K clustering problem, Ng-Jordan-Weiss (NJW) spectral clustering method adopts the eigenvectors corresponding to the K largest eigenvalues of the normalized affinity matrix derived from a dataset as a novel representation of the original data. However, these K eigenvectors can not always reflect the structure of the original data for some pattern recognition problems. In this paper, a semi-supervised eigenvector selection method for spectral clustering is proposed. This method utilizes some amount of supervised information to search the eigenvector combination which can reflect the structure of the original data, and then obtains more satisfying performance than the classical spectral clustering algorithms. Experimental results on UCI benchmark datasets and MNIST handwritten digits datasets show that the proposed method is effective and robust.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第1期48-56,共9页 Pattern Recognition and Artificial Intelligence
基金 国家973计划项目(No.2006CB705707) 国家863计划项目(No.2008AA01Z125 2009AA12Z210) 国家自然科学基金项目(No.60702062 60970067) 教育部重点项目(No.108115) 高等学校学科创新引智计划项目(111计划)(No.B07048)资助
关键词 谱聚类 特征向量选择 半监督学习 免疫克隆选择 Spectral Clustering, Eigenvector Selection, Semi-Supervised Learning, Immune CloneSelection
  • 相关文献

参考文献20

  • 1Fiedler M. Algebraic Connectivity of Graphs. Czechoslovak Mathe-matical Journal, 1973, 23 (98) : 298-305.
  • 2Hendrickson B, Leland R. An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations. SIAM Journal on Sci-entific Computing, 1995, 16(2) : 452-469.
  • 3Hagen L, Kahng A B. New Spectral Methods for Ratio Cut Partitio-ning and Clustering. IEEE Trans on Computer-Aided Design, 1992, 11(9) : 1074-1085.
  • 4Dhillon Spectral national (KDD) I S. Co-Clustering Documents and Words Using Bipartite Graph Partitioning// Proc of the 7th ACM SIGKDD Inter-Conference on Knowledge Discovery and Data Mining San Francisco, USA, 2001 : 269-274.
  • 5徐森,卢志茂,顾国昌.基于矩阵谱分析的文本聚类集成算法[J].模式识别与人工智能,2009,22(5):780-786. 被引量:6
  • 6Ding C, He Xiaofeng, Zha Hongyuan, et al. Unsupervised Learn-ing: Self-Aggregation in Scaled Principal Component Space//Proc of the 6th European Conference on Principles of Data Mining and Knowledge Discovery. Helsinki, Finland, 2002: 112-124.
  • 7Shi Jiaobo, Malik J. Normalized Cuts and Image Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 888-905.
  • 8Ng A Y, Jordan M I, Weiss Y. On Spectral Clustering: Analysis and an Algorithm// Dietterieh T, Beeker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems. Cambridge, USA : MIT Press, 2002, XIV : 849-856.
  • 9Fowlkes C, Belongie S, Chung F, et al. Spectral Grouping Using the Nystrom Method. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26 (2) : 214-225.
  • 10王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:94

二级参考文献34

  • 1唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 2Tan P N, Steinbach M, Kumar V. Introduction to Data Mining. Toronto, Canada: Addison-Wesley Longman, 2005.
  • 3Strehl A, Ghosh J. Cluster Ensembles--A Knowledge Reuse Framework for Combining Partitionings// Proc of the 11 th Conference on Artificial Intelligence. Edmonton, Canada, 2002 : 93 - 98.
  • 4Fred A L, Jain A K. Combining Multiple Clusterings Using Evidence Accumulation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (6) : 835 - 850.
  • 5Fern X Z, Brodley C E. Solving Cluster Ensemble Problems by Bipartite Graph Partitioning// Proc of the 20th International Conference on Machine Learning. Banff, Canada, 2004:36 -43.
  • 6Topchy A, Jain A K, Punch W. A Mixture Model for Clustering Ensembles// Proc of the 4th SIAM International Conference on Data Mining. Lake Buena Vista, USA, 2004:379 -390.
  • 7Ayad H, Basir O A, Kamel M. A Probabilistic Model Using Information Theoretic Measures for Cluster Ensembles//Proc of the 5th International Workshop on Multiple Classifier Systems. Cagliari, Italy, 2004:144-153.
  • 8Fern X Z, Lin W. Cluster Ensemble Selection. Statistical Analysis and Data Mining. 2008, 1(3) : 128 -141.
  • 9Luxburg U V. A Tutorial on Spectral Clustering. Statistics and Computing, 2007, 17(4) : 395 -416.
  • 10Shi Jianbo, Malik J. Normalized Cuts and Image Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 888 - 905.

共引文献98

同被引文献289

引证文献29

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部