期刊文献+

神经网络识别图像椒盐噪声的自适应滤波方法 被引量:6

An Adaptive Denoising Method for Salt and Pepper Noise Detected by Neural Network
下载PDF
导出
摘要 为了使椒盐噪声不影响图像的后续处理,提出一种基于BP神经网络噪声检测的自适应开关滤波器来检测和滤除图像椒盐噪声。该方法利用像素值及其邻域特性作为像素点的描述即神经网络的输入,通过神经网络自动检测图像的噪声位置,据此保持非噪声点不变,对噪声点进行自适应窗口大小的均值滤波处理,且仅窗口内非噪声点参与均值运算。实验结果表明,本方法中BP网络检测椒盐噪声效率高,整个滤波过程无需针对不同图像设置参数,滤波操作简单且性能优良,在去噪效果、细节保持和减少时间耗费等方面有一定优势。 To remove impulse noise from image before some other process, an adaptive switching filter based-on neural network noise detector is proposed. This method describes each pixel with pixel value and its neighborhood characteristics and takes these as inputs of the neural network to identify pixels which are likely to be contaminated by noise with the trained neural network automatically. According to the idea of switching filter, the noisy pixels detected are processed by mean filter with adaptive window size, and only noise-free pixels of the window are involved in the average computation. Compared with some other common filters, the experimental result shows that this BP neural network has high accuracy of salt and pepper noise detection. Besides, this filtering process is superior in denoising effect, details preserving and time consuming reduction without manual intervention.
出处 《光电工程》 CAS CSCD 北大核心 2011年第3期119-124,共6页 Opto-Electronic Engineering
基金 公益性行业(气象)科研专项资助(GYHY200806017) 国家自然科学基金资助项目(60874111)
关键词 BP神经网络 脉冲噪声 噪声检测 自适应均值滤波器 BP neural network impulse noise noise detection adaptive mean filter
  • 相关文献

参考文献11

  • 1Gonzalez R C, Woods R E. Digital Image Processing [M]. Prentice-Hall, Englewood Cliffs, NJ, 2002.
  • 2Sun T, Neuvo Y. Detail-preserving median based filters in image processing [J]. Pattern Recognition Letters(S0167-8655), 1994, 15(4): 341-347.
  • 3Abreu E, Lightstone M, Mitra S K, et al. A new efficient approach for the removal of impulse noise from highly corrupted images [J]. IEEE Trans. Image Process(S1057-7149), 1996, 5(6): 1012-1025.
  • 4邢藏菊,王守觉,邓浩江,罗予晋.一种基于极值中值的新型滤波算法[J].中国图象图形学报(A辑),2001,6(6):533-536. 被引量:170
  • 5ZHOU Wang, ZHANG David. Progressive switching median filter forthe removal of impulse noise from highly corrupted images [J]. IEEE Trans. Cireuits & Systems II: Analog and Digital Signal Processing(S1057-7130), 1999, 46(1): 78-80.
  • 6Chan R H, Ho C-W, Nikolova M. Salt-and-Pepper noise removal by median-type noise detectors and detail-preserving regularization [J]. IEEE Trans. Image Process(S1057-7149), 2005, 14(10): 1479-1485.
  • 7Apalkov I V,. Zvonarev P S, Khryashchev V V. Neural network adaptive switching median filter for image deiioising [C]//The International Conference on Computer as a Tool, EUROCON 2005, Belgrade, November 22-24, 2005: 959-962.
  • 8张军英,卢志军,石林,董继扬,石美红.基于脉冲耦合神经网络的椒盐噪声图像滤波[J].中国科学(E辑),2004,34(8):882-894. 被引量:19
  • 9Majhi B, Sa P k, Panda G K. ANN based Adaptive Threshold for Impulse Detection [C]// International Conference on Signal Processing, Pattern Recognition and Applications, 2006: 294-297.
  • 10Gamett R, Huegerich T, Chui C, et al. A universal noise removal algorithm with an impulse detector [J]. IEEE Trans. Image Process(S1057-7149), 2005, 14(11): 1747-1754.

二级参考文献27

  • 1[1]Sun T, Neuvo Y. Detail-preserving median based filters in image processing. Pattern Recognit. Lett., 1994,15:341-347.
  • 2[2]WangZhou, Zhang David. Progressive switching median filterfor the removal of impulse noise from highly corrupted images. IEEE Trans. On Circuits and Systems,Ⅱ: Analog and Digital Signal Processing, 1999,46(1):.
  • 3[3]WangJung-Hua, Lin Lian-Da. Improved median filter usingminmax algorithm for image processing. Electronics Letters, 31st July, 1997,33(16):.
  • 4[4]Brownrigg D R K. The weighted median filter. Commun. Ass. Comput. Mach., 1984,27(8):807~818.
  • 5[4]Sun T, Neuvo Y. Detail-preserving median based filters in image processing. Pattern Recognition Letter,1994, 15:341~347
  • 6[5]Florencio D, Schafer R. Decision-based median filter using local signal statistics. Proc SPIE Int Symp Visual Communications Image Processing, Chicago, Sept. 1994
  • 7[6]Eng How-Lung, Ma Kai-Kuang. Noise Adaptive Soft-Switching Median Filter, IEEE Trans on Image Processing, 2001, 10(2): 242~251
  • 8[7]Eckhorn R, Reiboeck H J, Arndt M, et al. A neural networks for feature linking via synchronous activity:Results from cat visual cortex and from simulations. In: Cotterill R M J, ed. Models of Brain Function,Cambridge: Cambridge Univ Press, 1989
  • 9[8]Eckhorn P. Neural Mechanisms of Scene Segmentation: Recordings from the Visual Cortex Suggest Basic Circuits or Linking Field Models. IEEE Trans Neural Networks, 1999, 10(3): 464~479
  • 10[9]Broussard R P, Rogers S K, Oxley M E, et al. Physiologically Motivated Image Fusion for Object Detection using a Pulse Coupled Neural Network. IEEE Trans Neural Networks, 1999, 10(3): 554~563

共引文献186

同被引文献32

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部