期刊文献+

多尺度空间基于集中度判定的二维稳像算法 被引量:2

Multi-scale Space Two Dimension High Precision Video Stabilization Based on Concentration Degree
下载PDF
导出
摘要 二轴运动平台由于震动、非一致性摩擦等因素造成视频序列出现抖动,同时外部噪声,光照变化等对图像特征提取、匹配等存在严重影响导致运动向量估计错误,本文提出一种在多尺度空间基于集中度判定的二维稳像算法。通过在多尺度空间下提取视频序列的不变特征,采用深度优先最邻近搜索算法,寻找匹配点对,然后计算匹配点对的集中度,通过最优集中化原则,建立不同层次的计算模型估算二维运动空间的补偿参数,实现抖动视频的亚像素精度补偿。实验采用320×240pixels灰度图像序列测试,本文算法稳像精度高,运动估计时间仅为随机抽样一致性算法的13%,有效提升了整个稳像算法的性能。 The vibration and friction factors of two-axis motion platform cause video jitter and because of image feature extraction and matching influenced by illumination variation, noise and so on, the wrong motion vector will be estimated. The multi-scale space two dimension high precision video stabilization algorithm is proposed based on concentration degree. Invariant features are extracted, and then the depth first nearest neighbor search algorithm is used to get the matching double points. At last, concentration degree is computed, and different computing models are built to estimate compensation parameters by optimal concentration degree principle. 320×240 pixels gray video sequence is used in experiment, and the algorithm proposed in this paper has high precision. The estimation time is just 13% of Random Sample Consensus (RANSAC), which improves the performance of video stabilization.
出处 《光电工程》 CAS CSCD 北大核心 2011年第3期138-144,共7页 Opto-Electronic Engineering
基金 国家863高技术研究发展计划资助项目(2007AA12Z113) 973国家自然基金项目(2009CB72400105)
关键词 电子稳像 集中度 尺度空间 不变特征 运动估计 electric image stabilization concentration degree scale space invariant feature motion estimation
  • 相关文献

参考文献7

  • 1BATTIATO S, GALLO G, PUGLISI G, et al. SIFT Features Tracking for Video Stabilization [C]// International Conference on Image Analysis and Processing, Modena, Sept 10-14, 2007: 825-830.
  • 2赵红颖,晏磊,熊经武.舰船图像序列电子稳定算法的研究[J].光学精密工程,2003,11(6):602-606. 被引量:12
  • 3Lowe D G. Distinctive image features from scale invariant keypoints [J]. International Journal of Computation Vision(S0302-9743), 2004, 60(2): 91-110.
  • 4HERBERT BAY, AND/LEAS ESS, TINNE TUYTELAAR, et al. Speeded Up Robust Features(SURF) [J]. Computer Vision and Image Understanding (CVIU) (S0302-9743), 2008, 110(3): 346-359.
  • 5LINDEBERG T. Feature detection with automatic scale selection [J]. International Journal of Computer Vision (S0302-9743), 1998, 30(2): 79-116.
  • 6k Zhang Z. Parameter estimation techniques: a tutorial with application to conic fitting [J]. Image and Vision Computing Journal(S0302-9743), 1997, 1(25): 59-76.
  • 7Matas J, Chum O. Randomized RANSAC with T(d, d) test [J]. Image and Vision Computing (S0302-9743), 2004, 22(10): 837-842.

二级参考文献5

  • 1BALAKIRSKY S. Comparison of electronic image stabilization systems[D]. Master's thesis, Departmemt of Electrical Engineering ,University of Maryland ,Collage Park,1995.
  • 2MAHEUX J. Video-rate stabilization system[J].SPIE, 1998,3414:232-238.
  • 3CENSI A. Image stabilization by feature tracking[A].10th International Conference on Image Analysis and Processing,IEEE[C].1999:665-667.
  • 4HANSEN M. Real-time scene stabilization and mosaic construction[C]. In Proc. DARPA Image Understanding Workshop, CA,1994.
  • 5赵红颖,金宏,熊经武.电子稳像技术概述[J].光学精密工程,2001,9(4):353-359. 被引量:69

共引文献11

同被引文献26

  • 1CAI J, WALKER R. Robust motion estimation for camcorders mounted in mobile platforms [J]. The Conference of the Australian Pattern Recognition Society on Digital Image Computing: Techniques and Applications(S1325-3034), Canberra, Australia, Dec 1-3, 2008: 491-497.
  • 2LUCIO MARCENARO, GIANNt VERNAZA, REGAZZONI CARLO S. Image stabilization algorithm for video-surveillance application [J]. Proe. Int. Conf. Image Proeesslng(S2969-2972), 2001, 1: 349-352.
  • 3CAI J, WALKER R. Robust video stabilization algorithm using feature point selection and delta optical flow [J]. IET Computer Vision 2009(S1751-9632), 2009, 3(4): 176-188.
  • 4BATTIATO, GALLO S, PUGLISI G, et al. SIFT Features Tracking for Video Stabilization [C]// International Conference on Image Analysis and Processing, Modena, Italy, September 10-14, 2007: 825-830.
  • 5AMIN NAIT-ALI. Genetic Algorithms for Blind Digital Image Stabilization under Very Low SNR [J]. IEEE Transactions on Consumer Electronics(S0098-3063), 2007, 53(3): 857-884.
  • 6FERENCZ A, LEARNED MILLER, MALIK E G. Leaming to Locate Informative Features for Visual Identification [J]. International Journal of Co.mputer Vision(S1573-1405), 2008, 77(1/3): 3-24.
  • 7KO S, LEE S H, JEON S W, et al. Fast digital image stabilizer based on Gray-coded bit-plane matching [J]. IEEE Trans. Consumer Electron(S0098-3063), 1999, 45(3): 598-603.
  • 8PAN Z, NGO C W. Selective Object Stabilization for Home Video Consumers [J]. IEEE Transactions on Consumer Electronics(S0098-3063), 2005, 51(4): 1074-1084.
  • 9ERTURK S, DENNIS T J. Image sequence stabilization based on DFT filtering [J]. IEEE Proceedings on Image Vision and Signal Processing(S1751-9667), 2000, 147(2): 95-102.
  • 10JOHN NICKOLLS, IANBUCK, MICHEAL GARLAND. Scalable Parallel Programming with CUDA [J]. ACM QUEUE(S1452-7730), 2008, 6(2): 40-53.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部