期刊文献+

一类具有非局部源的退化抛物方程组解的整体存在和有限爆破

Global Existence and Blow-up for a Degenerate Parabolic System with Nolocal Source
下载PDF
导出
摘要 讨论了一类具有非局部源的退化抛物方程组:u1=vp2(△u+bum2∫Ωvq2 dx),vt=up2(△v+bvm2∫Ωuq2 dx)在Diriclet边界条件下解的爆破现象.通过运用比较原理和上、下解方法,建立了该方程组解的整体存在和有限爆破的充分条件. The blow-up phenomenon for a nonlocal degenerate system u1=vp2(△u+bum2∫Ωvq2dx),vt=up2(△v+bvm2∫Ωuq2dx),with Dirichlet boundary condition is considered.By comparison theorem and the upper-lower solution method,the sufficient conditions for the global existence and the finite time blow-up of solution to the system are established.
出处 《西华师范大学学报(自然科学版)》 2011年第1期85-88,共4页 Journal of China West Normal University(Natural Sciences)
基金 四川省教育厅重点自然科学基金资助项目(09ZA119)
关键词 退化抛物方程组 非局部源 整体存在 有限爆破 nonlocal source degenerate parabolic system global existence finite time blow-up.
  • 相关文献

参考文献8

  • 1GALAKTIONOV V A. A Boundary Value Problem for the Nonlinear Parabolic Equation u1 =△u^α+1+u^β[ J]. Differential E - quations, 1981,17 ( 5 ) :836 - 842.
  • 2PASSO R. DAL, S. LUCKHAUS. A Degenerate Diffusion Problem not in Divergence form [ J]. J Differential Equations, 1987, 69 (1):1 -14.
  • 3WANG S,WANG M X,XIE C H. A Nonlinear Degenerate Diffusion Equation Not in Divergence Form [ J]. Z Angew MathPhys, 2000,51 : 149 - 159.
  • 4LI Y X,DENG W B,XIE C H. Global Existence and Nonexistence for Degenerate Parabolic Systems[J]. Proc Amer Math Soc, 130(2002) ,3661 - 3670.
  • 5DENG W B, LI Y X, XIE C H. Existence and Nonexistence of Global Solutions of Some Non-local Degenerate Parabolic System [ J ]. Proc Amer Math Soc, 2003,137 ( 3 ) : 1573 - 1582.
  • 6张岩,宋小军.一类带非局源的退化抛物方程组解的整体存在与爆破(英文)[J].西南大学学报(自然科学版),2008,30(9):80-84. 被引量:5
  • 7ROSSI J D,WOLANSKI N. Blow-up vs. Global Existence for a Semilinear Reaction-Diffusion System in a Bounded Domain[ J]. Comm Partial Differential Equations, 1995, 20 (2) : 1991 - 2004.
  • 8王玉兰,宋小军,张岩.一类反应扩散方程组的解的爆破(英文)[J].西南师范大学学报(自然科学版),2006,31(5):43-46. 被引量:6

二级参考文献15

  • 1王玉兰,宋小军,张岩.一类反应扩散方程组的解的爆破(英文)[J].西南师范大学学报(自然科学版),2006,31(5):43-46. 被引量:6
  • 2[1]Galaktionov V A.A Boundary Value Problem for the Nonlinear Parabolic Equation ut=Δ uσ+1+uβ[J].Differential Equations,1981,17(5):836-842.
  • 3[2]Passo R.Dal,S.Luckhaus.A Degenerate Diffusion Problem not in Divergence form[J].J Differential Equations,1987,69(1):1-14.
  • 4[3]Wang S,Wang M X,Xie C H.A Nonlinear Degenerate Diffusion Equation Not in Divergence form[J].Z Angew Math Phys,2000,51:149-159.
  • 5[4]Li F C,Xie C H.Existence and Blow-up for a Degenerate Parabolic Equation with Nonlocal Source[J].Nonlinear Anal,2003,52(3):523-534.
  • 6[5]Li F C,Xie C H.Global Existence and Blow-up for a Nonlinear Porous Medium Equation[J].Appl Math Letters,2003,16:185-192.
  • 7[6]Deng W B,Li Y X,Xie C H.Existence and Nonexistence of Global Solutions of Some Non-local Degenerate Parabolic System[J].Proc Amer Math Soc,2003,137(3):1573-1582.
  • 8[7]Rossi J D,Wolanski N.Blow-up vs.Global Existence for a Semilinear Reaction-Diffusion System in a Bounded Domain[J].Comm Partial Differential Equations,1995,20(2):1991-2004.
  • 9[9]Li Y X,Deng W B,Xie C H.Global Existence and Nonexistence for Degenerate Parabolic Systems[J].Pro Amer Math Soc,2002,130(3):3661-3670.
  • 10Levine H A. The Role of Critical Exponents in Blowup Theorem [J]. SIAM Rev, 1990, 32:268-288.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部